scholarly journals Comparing the Nucleosynthesis Parameters of s+r Stars and Ba Stars

2008 ◽  
Vol 4 (S252) ◽  
pp. 113-114
Author(s):  
Wen-Yuan Cui ◽  
Dong-Nuan Cui ◽  
Bo Zhang

AbstractIn this paper, we use a parametric model of the asymptotic giant branch (AGB) stars, in which the 13C neutron source is activated in radiative conditions during the interpulse periods, to calculate the nucleosynthesis in 29 very metal-poor double-enhanced stars (i.e. s+r stars) and 26 barium stars (i.e. Ba stars), respectively. Through a statistical analyzing on the corresponding parameters obtained for the above stars, we get the possible conditions which the s+r stars formed in. We find that the value of neutron exposures of most s+r stars is greater than that of Ba stars. In the very metal-poor stars, the Ba stars stars should belong to the binary systems with large initial orbital separation, by comparing the s-process-component coefficient (Cs) values with those of s+r stars. For s+r stars, there is strong correlation between their Cs and Cr (r-process-component coefficient) but no correlation for Ba stars. This strongly confirms the possibility that the s+r stars should form through the accretion-induced collapse (AIC) or type 1.5 supernova mechanism.

Author(s):  
M P Roriz ◽  
M Lugaro ◽  
C B Pereira ◽  
N A Drake ◽  
S Junqueira ◽  
...  

Abstract Barium (Ba) stars are chemically peculiar stars that display in their atmospheres the signature of the slow neutron-capture (the s-process) mechanism that occurs in asymptotic giant branch (AGB) stars, a main contributor to the cosmic abundances. The observed chemical peculiarity in these objects is not due to self-enrichment, but to mass transfer between the components of a binary system. The atmospheres of Ba stars are therefore excellent astrophysical laboratories providing strong constraints for the nucleosynthesis of the s-process in AGB stars. In particular, rubidium (Rb) is a key element for the s-process diagnostic because it is sensitive to the neutron density and therefore its abundance can reveal the main neutron source for the s-process in AGB stars. We present Rb abundances for a large sample of 180 Ba stars from high resolution spectra (R = 48000), and we compare the observed [Rb/Zr] ratios with theoretical predictions from AGB s-process nucleosynthesis models. The target Ba stars in this study display [Rb/Zr] <0, showing that Rb was not efficiently produced by the activation of branching points. Model predictions from the Monash and FRUITY data sets of low-mass (≲ 4 M⊙) AGB stars are able to cover the Rb abundances observed in the target Ba stars. These observations indicate that the 13C(α,n)16O reaction is the main neutron source of the s-process in the low-mass AGB companions of the observed Ba stars. We have not found in the present study candidate companion for IR/OH massive AGB stars.


1991 ◽  
Vol 145 ◽  
pp. 257-274
Author(s):  
Icko Iben

A brief review is given of the structure of asymptotic giant branch (AGB) stars and of the characteristics of the thermal pulses which these stars experience. Following a pulse, model AGB stars with a large core mass easily dredge up fresh carbon, which is the main product of incomplete helium burning, and s-process isotopes, which are made as a consequence of the activation of the 22Ne neutron source. Model AGB stars of small core mass activate the 13C neutron source and produce s-process isotopes in nearly the solar system distribution. They also dredge up fresh carbon and s-process isotopes, but only if overshoot or some other form of “extra” mixing beyond the lower boundary of the convective envelope is invoked.


2000 ◽  
Vol 177 ◽  
pp. 443-448
Author(s):  
Verne V. Smith

The production of certain neutron-rich elements heavier than iron occurs during He shell-burning on the asymptotic giant branch (AGB). These neutron captures occur at rather low neutron densities and, thus, the resulting heavy-element nucleosynthesis is characterisitic of the so-called s-process. Abundance analyses of the s-process elements in AGB stars can reveal details of the neutron densities and the stage of AGB evolution at which s-processing occurs, as well as the nature of the neutron source. These details derived from observations can constrain models of stars evolving along the AGB. Recent results concerning the nature of the s-process as a function of metallicity and the nature of the neutron source are reviewed.


1984 ◽  
Vol 105 ◽  
pp. 3-19
Author(s):  
Icko Iben

Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22Ne(α, n)25Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13C(α, n) 16O reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes. After the dredge-up phase following each pulse, the 13C is made by the reactions 12C(p,γ) 13N(β+ v) 13C in a zone of large 12C abundance and small 1H abundance that has been established by semiconvective mixing during the dredge-up phase. There is qualitative accord between the properties of carbon stars in the Magellanic Clouds and properties of model stars, but considerably more theoretical work is required before a quantitative match is achieved.The observed paucity of AGB stars more luminous than MBOL ∼ −6 is interpreted to mean that the AGB lifetime of a star more luminous than this is at least a factor of ten smaller than the AGB lifetime of stars less luminous than this, or, at most 105 yr. Since, with current estimates of the 22Ne(α, n)25Mg reaction rate R22, only AGB model stars more luminous than MBOL ∼ −6 can produce s-process isotopes in the solar system distribution, it is inferred that either (1) the current estimates of R22 are too small by one to two orders of magnitude, allowing less luminous AGB stars to contribute, (2) the solar system distribution is not equivalent to the average Galactic distribution, being rather the consequence of a unique injection into the protosolar nebula of matter from a massive intermediate-mass AGB star, or (3) the estimates of the temperatures in the convective shell that are given by extant models are too low by, sav, 10 or 15 percent.The absence of carbon stars more luminous than MBOL ∼ −6 is suggested to be due primarily to the fact that ∼ 106 yr of AGB evolution is necessary to produce surface C/O > 1, rather than to be due to the burning of dredged-up carbon into nitrogen at the base of the convective envelope during the interpulse quiescent hydrogen-burning phase. Thus, the positive correlation between the nitrogen and helium abundances in planetary nebulae is perhaps primarily a consequence of the second dredge-up episode rather than a consequence of processes occurring during the thermally pulsing phase.


2009 ◽  
Vol 26 (3) ◽  
pp. 176-183 ◽  
Author(s):  
Laura Husti ◽  
Roberto Gallino ◽  
Sara Bisterzo ◽  
Oscar Straniero ◽  
Sergio Cristallo

AbstractBarium stars are extrinsic Asymptotic Giant Branch (AGB) stars. They present the s-enhancement characteristic for AGB and post-AGB stars, but are in an earlier evolutionary stage (main sequence dwarfs, subgiants, red giants). They are believed to form in binary systems, where a more massive companion evolved faster, produced the s-elements during its AGB phase, polluted the present barium star through stellar winds and became a white dwarf. The samples of barium stars of Allen & Barbuy (2006) and of Smiljanic et al. (2007) are analysed here. Spectra of both samples were obtained at high-resolution and high S/N. We compare these observations with AGB nucleosynthesis models using different initial masses and a spread of 13C-pocket efficiencies. Once a consistent solution is found for the whole elemental distribution of abundances, a proper dilution factor is applied. This dilution is explained by the fact that the s-rich material transferred from the AGB to the nowadays observed stars is mixed with the envelope of the accretor. We also analyse the mass transfer process, and obtain the wind velocity for giants and subgiants with known orbital period. We find evidence that thermohaline mixing is acting inside main sequence dwarfs and we present a method for estimating its depth.


2019 ◽  
Vol 631 ◽  
pp. A53 ◽  
Author(s):  
D. Bollen ◽  
D. Kamath ◽  
H. Van Winckel ◽  
O. De Marco

Aims. We aim to determine the geometry, density gradient, and velocity structure of jets in post-asymptotic giant branch (post-AGB) binaries. Methods. Our high cadence time series of high-resolution optical spectra of jet-creating post-AGB binary systems provide us with a unique tomography of the jet. We determine the spatio-kinematic structure of the jets based on these data by fitting the synthetic spectral line profiles created by our model to the observed, orbital phase-resolved, Hα-line profiles of these systems. The fitting routine is provided with an initial spectrum and is allowed to test three configurations, derived from three specific jet launching models: a stellar jet launched by the star, an X-wind, and a disk wind configuration. We apply a Markov-chain Monte Carlo routine in order to fit our model to the observations. Our fitting code is tested on the post-AGB binary IRAS 19135+3937. Results. We find that a model using the stellar jet configuration gives a marginally better fit to our observations. The jet has a wide half-opening angle of about 76° and reaches velocities up to 870 km s−1. Conclusions. Our methodology is successful in determining some parameters for jets in post-AGB binaries. The model for IRAS 19135+3937 includes a transparent, low density inner region (for a half-opening angle < 40°). The source feeding the accretion disk around the companion is most likely the circumbinary disk. We will apply this jet fitting routine to other jet-creating post-AGB stars in order to provide a more complete description of these objects.


1991 ◽  
Vol 145 ◽  
pp. 299-316
Author(s):  
David L. Lambert

This review discusses the chemical composition of AGB stars in the light of predictions for intermediate-mass (3-8 M⊙, 22Ne(α,n) = the neutron source) and low-mass (< 3 M⊙, 13C(α,n) = the neutron source) stars. LM-AGB models can be constructed with envelopes having a composition quite similar to that of solar system material, the SiC grains recently discovered in meteorites, and real AGB stars in the sequence of spectral types M → S → C. Stellar counterparts of the IM-AGB models have yet to be discovered.


2018 ◽  
Vol 14 (S343) ◽  
pp. 438-440
Author(s):  
D. Karinkuzhi ◽  
S. Van Eck ◽  
A. Jorissen ◽  
S. Goriely ◽  
L. Siess ◽  
...  

AbstractWe determine Zr and Nb elemental abundances in barium stars to probe the operation temperature of the s-process that occurred in the companion asymptotic giant branch (AGB) stars. Along with Zr and Nb, we derive the abundances of a large number of heavy elements. They provide constraints on the s-process operation temperature and therefore on the s-process neutron source. The results are then compared with stellar evolution and nucleosynthesis models. We compare the nucleosynthetic profile of the present sample stars with those of CEMP-s, CEMP-rs and CEMP-r stars. One barium star of our sample is potentially identified as the highest-metallicity CEMP-rs star yet discovered.


2011 ◽  
Vol 7 (S283) ◽  
pp. 59-62
Author(s):  
Eric Lagadec ◽  
Tijl Verhoelst ◽  
Djamel Mékarnia ◽  
Olga Suárez ◽  
Albert A. Zijlstra ◽  
...  

AbstractPost-AGB stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the Asymptotic Giant Branch (AGB) towards the planetary nebula stage. There is growing evidences that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, T-Recs/Gemini South and Michelle/Gemini North. We found that all the the proto-planetary nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non resolved. The resolved targets can be divided in two categories. The nebulae with a dense central core, that are either bipolar and multipolar. The nebulae with no central core have an elliptical morphology. The dense central torus observed likely host binary systems which triggered fast outflows that shaped the nebulae.


2018 ◽  
Vol 620 ◽  
pp. A85 ◽  
Author(s):  
Glenn-Michael Oomen ◽  
Hans Van Winckel ◽  
Onno Pols ◽  
Gijs Nelemans ◽  
Ana Escorza ◽  
...  

Binary post-asymptotic giant branch (post-AGB) stars are thought to be the products of a strong but poorly understood interaction during the AGB phase. The aim of this contribution is to update the orbital elements of a sample of galactic post-AGB binaries observed in a long-term radial-velocity monitoring campaign by analysing these systems in a homogeneous way. Radial velocities are computed from high signal-to-noise spectra via a cross-correlation method. The radial-velocity curves are fitted by using both a least-squares algorithm and a Nelder–Mead simplex algorithm. We use a Monte Carlo method to compute uncertainties on the orbital elements. The resulting mass functions are used to derive a companion mass distribution by optimising the predicted to the observed cumulative mass-function distributions, after correcting for observational bias. As a result, we derive and update orbital elements for 33 galactic post-AGB binaries, among which 3 are new orbits. The orbital periods of the systems range from 100 to about 3000 days. Over 70% (23 out of 33) of our binaries have significant non-zero eccentricities ranging over all periods. Their orbits are non-circular even though the Roche-lobe radii are smaller than the maximum size of a typical AGB star and tidal circularisation should have been strong when the objects were on the AGB. We derive a distribution of companion masses that is peaked around 1.09 M⊙ with a standard deviation of 0.62 M⊙. The large spread in companion masses highlights the diversity of post-AGB binary systems. Post-AGB binaries are often chemically peculiar, showing in their photospheres the result of an accretion process of circumstellar gas devoid of refractory elements. We find that only post-AGB stars with high effective temperatures (> 5500 K) in wide orbits are depleted in refractory elements, suggesting that re-accretion of material from a circumbinary disc is an ongoing process. It appears, however, that depletion is inefficient for the closest orbits irrespective of the actual surface temperature.


Sign in / Sign up

Export Citation Format

Share Document