scholarly journals Strong gravitational lensing: relativity in action

2009 ◽  
Vol 5 (S261) ◽  
pp. 249-259
Author(s):  
Joachim Wambsganss

AbstractDeflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

2005 ◽  
Vol 277-279 ◽  
pp. 783-788
Author(s):  
K. Chang

Gravitational lensing (GL) provides the sudden changes in flux densities, when a compact source crosses a critical curve. Due to lensing, the image of the lensed object is split into at least two images, and merged together upon the source crossing the critical curve. Light paths of the images differ from one another’s, so results time delay to the observer. Asymmetric light curves and the time delay in lensing contain astrophysical information on the GL system: e.g. source structure, density distribution, and cosmological distance scale. The disalignment of GL system, b, is an important parameter in the GL analysis. We derive b as a function of density parameter of gravitational lens mass. We present an analytical formulation to determine cosmological distance scales, hence the Hubble parameter, and other properties of GL system. We also discuss degeneracies in the GL mapping.


2012 ◽  
Vol 8 (S289) ◽  
pp. 331-338
Author(s):  
S. H. Suyu

AbstractThe time delays between the multiple images of a strong gravitational-lens system, together with a model of the lens-mass distribution, provide a one-step determination of the time-delay distance, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. I review the recent advances in measuring time-delay distances, and present the current status of cosmological constraints based on gravitational-lens time delays. In particular, I report the time-delay distance measurements of two gravitational lenses and their implication for cosmology from a recent study by Suyuet al.


1996 ◽  
Vol 168 ◽  
pp. 209-217
Author(s):  
Peter Schneider

It was recognized very early that the gravitational lens effect can be used as an efficient cosmological tool. Of the many researchers who foresaw the use of lensing, F. Zwicky and S. Refsdal should be explicitly mentioned. The perhaps most accurate predictions and foresights by these two authors are as follows: Zwicky estimated the probability that a distant object is multiply imaged to be about 1/400, and thus that the observation of this effect is “a certainty” [73] – his value, which was obtained by a very crude reasoning, is in fact very close to current estimates of the lensing probability of high-redshift QSOs. He predicted that the magnification caused by gravitational light deflection will allow a “deeper look” into the universe –in fact, the spectroscopy of very faint galaxies which are imaged into giant luminous arcs have yielded spectral information which would be very difficult to obtain without these ‘natural telescopes’. And third, Zwicky saw that gravitational lenses may be used to determine the mass of distant extragalactic objects[72] – in fact, the mass determination of clusters masses from giant luminous arcs is as least as accurate as other methods, but does not rely on special assumptions (like spherical symmetry, virial or thermal equilibrium) inherent in other methods, and the determination of the mass within the inner 0.9 arcseconds of the lensing galaxy in the quadruple QSO 2237+0305 to within 2% [52] is the most accurate extragalactic mass determination known. Refsdal predicted the use of gravitational lenses for determining cosmological parameters and for testing cosmological theories [48][49] – we shall return to these issues below.


2001 ◽  
Vol 18 (2) ◽  
pp. 179-181 ◽  
Author(s):  
L. V. E. Koopmans ◽  
The CLASS Collaboration

AbstractOne of the main objectives of the Cosmic Lens All-Sky Survey (CLASS) collaboration has been to find gravitational lens (GL) systems at radio wavelengths that are suitable for the determination of time delays between image pairs. The survey is now near completion and at least 18 GL systems have been found. Here, I will discuss our efforts to measure time delays from several of these systems with the ultimate aim of constraining the Hubble Constant (H0). Thus far three CLASS GL systems (B0218+357, B1600+434 and B1608+656) have yielded measurements of time delays, from which values of H0 ≈ 60–70 km s−1 Mpc−1 have been estimated. Although most GL systems give similar values of H0, statistical and systematic uncertainties are still considerable. To reduce these uncertainties, I will mention two monitoring programs that we are undertaking to (re)measure time delays in 14 CLASS GL systems and address several important issues for the near future.


Author(s):  
Marco Bonici ◽  
Nicola Alchera ◽  
Nicola Maggiore

One application of the Cosmological Gravitational Lensing in General Relativity is the measurement of the Hubble constant H_0 using the time delay Delta t between multiple images of lensed quasars. This method has already been applied, obtaining a value of H_0 compatible with that obtained from the SNe 1A, but non compatible with that obtained studying the anisotropies of the CMB. This difference could be a statistical fluctuation or an indication of new physics beyond the Standard Model of Cosmology, so it desirable to improve the precision of the measurements. At the current technological capabilities it is possible to obtain H_0 to a percent level uncertainty, so a more accurate theoretical model could be necessary in order to increase the precision about the determination of H_0. The actual formula which relates Delta t with H_0 is approximated; in this paper we expose a proposal to go beyond the previous analysis and, within the context of a new model, we obtain a more precise formula than that present in the Literature.


2012 ◽  
Vol 8 (S289) ◽  
pp. 339-343
Author(s):  
Massimiliano Bonamente ◽  
John Carlstrom ◽  
Eric Leitch ◽  
Marshall Joy ◽  
Daniel Marrone ◽  
...  

AbstractX-ray and Sunyaev–Zeldovich effect (SZE) observations of galaxy clusters can be used to measure their distances independently of the cosmic distance ladder. We have determined the distance to 38 clusters of galaxies in the redshift range 0.14 ≤ z ≤ 0.89 using X-ray data from the Chandra X-ray Observatory and SZE data from the Owens Valley Radio Observatory and the Berkeley–Illinois–Maryland Association interferometric arrays. We measure a Hubble constant of H0 = 76.9+3.9−3.4+10.0−8.0 km s−1 Mpc−1 (statistical followed by systematic uncertainties at 68% confidence) for an ΩM=0.3, ΩΛ=0.7 cosmology. Our determination of the Hubble parameter in the distant Universe agrees with measurements from the Hubble Space Telescope Key Project that probed the nearby Universe.


2020 ◽  
Vol 499 (4) ◽  
pp. 5641-5652
Author(s):  
Georgios Vernardos ◽  
Grigorios Tsagkatakis ◽  
Yannis Pantazis

ABSTRACT Gravitational lensing is a powerful tool for constraining substructure in the mass distribution of galaxies, be it from the presence of dark matter sub-haloes or due to physical mechanisms affecting the baryons throughout galaxy evolution. Such substructure is hard to model and is either ignored by traditional, smooth modelling, approaches, or treated as well-localized massive perturbers. In this work, we propose a deep learning approach to quantify the statistical properties of such perturbations directly from images, where only the extended lensed source features within a mask are considered, without the need of any lens modelling. Our training data consist of mock lensed images assuming perturbing Gaussian Random Fields permeating the smooth overall lens potential, and, for the first time, using images of real galaxies as the lensed source. We employ a novel deep neural network that can handle arbitrary uncertainty intervals associated with the training data set labels as input, provides probability distributions as output, and adopts a composite loss function. The method succeeds not only in accurately estimating the actual parameter values, but also reduces the predicted confidence intervals by 10 per cent in an unsupervised manner, i.e. without having access to the actual ground truth values. Our results are invariant to the inherent degeneracy between mass perturbations in the lens and complex brightness profiles for the source. Hence, we can quantitatively and robustly quantify the smoothness of the mass density of thousands of lenses, including confidence intervals, and provide a consistent ranking for follow-up science.


Sign in / Sign up

Export Citation Format

Share Document