scholarly journals The dynamical effect of white dwarf kicks in star clusters

2009 ◽  
Vol 5 (S266) ◽  
pp. 318-319
Author(s):  
Harvey B. Richer

AbstractGlobular star clusters generally have large cores, i.e., rc/rh (the ratio of core to half-light radii) exceeds 0.3 for more than 50% of the Galactic globular clusters. In the absence of a central heating source, dynamical models suggest that massive clusters will contract, typically on a timescale shorter than a Hubble time, and exhibit a compact core. To explain the disagreement between observations and theory, intermediate-mass mass black holes have been invoked to explain the core structure. Recent observations, however, have failed to definitively prove their existence in clusters. A new scenario, involving a natal kick given to white dwarfs may provide the required heating and help clusters avoid or delay core collapse.

2019 ◽  
Vol 14 (S351) ◽  
pp. 357-366
Author(s):  
Kyle Kremer ◽  
Claire S. Ye ◽  
Sourav Chatterjee ◽  
Carl L. Rodriguez ◽  
Frederic A. Rasio

AbstractAs self-gravitating systems, dense star clusters exhibit a natural diffusion of energy from their innermost to outermost regions, leading to a slow and steady contraction of the core until it ultimately collapses under gravity. However, in spite of the natural tendency toward “core collapse,” the globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the core-collapsed and non-core-collapsed clusters. This suggests an internal energy source is at work, delaying the onset of core collapse in many clusters. Over the past decade, a large amount of work has suggested that stellar black holes (BHs) play a dynamically-significant role in clusters throughout their entire lifetimes. Here we review our latest understanding of BH populations in GCs and demonstrate that, through their dynamical interaction with their host cluster, BHs can naturally explain the distinction between core-collapsed and non-core-collapsed clusters through a process we call “black hole burning.”


2020 ◽  
Vol 500 (2) ◽  
pp. 2514-2524
Author(s):  
Joel Pfeffer ◽  
Carmela Lardo ◽  
Nate Bastian ◽  
Sara Saracino ◽  
Sebastian Kamann

ABSTRACT A number of the massive clusters in the halo, bulge, and disc of the Galaxy are not genuine globular clusters (GCs) but instead are different beasts altogether. They are the remnant nuclear star clusters (NSCs) of ancient galaxies since accreted by the Milky Way. While some clusters are readily identifiable as NSCs and can be readily traced back to their host galaxy (e.g. M54 and the Sagittarius Dwarf galaxy), others have proven more elusive. Here, we combine a number of independent constraints, focusing on their internal abundances and overall kinematics, to find NSCs accreted by the Galaxy and trace them to their accretion event. We find that the true NSCs accreted by the Galaxy are: M54 from the Sagittarius Dwarf, ω Centari from Gaia-Enceladus/Sausage, NGC 6273 from Kraken, and (potentially) NGC 6934 from the Helmi Streams. These NSCs are prime candidates for searches of intermediate-mass black holes (BHs) within star clusters, given the common occurrence of galaxies hosting both NSCs and central massive BHs. No NSC appears to be associated with Sequoia or other minor accretion events. Other claimed NSCs are shown not to be such. We also discuss the peculiar case of Terzan 5, which may represent a unique case of a cluster–cluster merger.


2021 ◽  
Vol 503 (1) ◽  
pp. 1490-1506
Author(s):  
Maximilian Häberle ◽  
Mattia Libralato ◽  
Andrea Bellini ◽  
Laura L Watkins ◽  
Jörg-Uwe Pott ◽  
...  

ABSTRACT We present an astrometric study of the proper motions (PMs) in the core of the globular cluster NGC 6441. The core of this cluster has a high density and observations with current instrumentation are very challenging. We combine ground-based, high-angular-resolution NACO@VLT images with Hubble Space Telescope ACS/HRC data and measure PMs with a temporal baseline of 15 yr for about 1400 stars in the centremost 15 arcsec of the cluster. We reach a PM precision of ∼30 µas yr−1 for bright, well-measured stars. Our results for the velocity dispersion are in good agreement with other studies and extend already existing analyses of the stellar kinematics of NGC 6441 to its centremost region never probed before. In the innermost arcsecond of the cluster, we measure a velocity dispersion of (19.1 ± 2.0) km s−1 for evolved stars. Because of its high mass, NGC 6441 is a promising candidate for harbouring an intermediate-mass black hole (IMBH). We combine our measurements with additional data from the literature and compute dynamical models of the cluster. We find an upper limit of $M_{\rm IMBH} \lt 1.32 \times 10^4\, \textrm{M}_\odot$ but we can neither confirm nor rule out its presence. We also refine the dynamical distance of the cluster to $12.74^{+0.16}_{-0.15}$ kpc. Although the hunt for an IMBH in NGC 6441 is not yet concluded, our results show how future observations with extremely large telescopes will benefit from the long temporal baseline offered by existing high-angular-resolution data.


1985 ◽  
Vol 113 ◽  
pp. 139-160 ◽  
Author(s):  
Douglas C. Heggie

This review describes work on the evolution of a stellar system during the phase which starts at the end of core collapse. It begins with an account of the models of Hénon, Goodman, and Inagaki and Lynden-Bell, as well as evaporative models, and modifications to these models which are needed in the core. Next, these models are related to more detailed numerical calculations of gaseous models, Fokker-Planck models, N-body calculations, etc., and some problems for further work in these directions are outlined. The review concludes with a discussion of the relation between theoretical models and observations of the surface density profiles and statistics of actual globular clusters.


1988 ◽  
Vol 126 ◽  
pp. 283-296
Author(s):  
David F. Chernoff ◽  
Stuart L. Shapiro

The influence of tidal heating on the evolution of globular clusters (GC's) in circular orbits about the Galactic center is studied. Giant Molecular Clouds (GMC's) stretch a globular cluster in a direction transverse to its orbit through the disk. The variation in acceleration with height in the disk compresses the cluster in a longititudinal direction. Numerical and analytic calculations of heating and mass loss for GC's, represented by King models, show that disk heating dominates. We apply the results to calculate GC evolution prior to core collapse or tidal disruption using a three parameter (energy, mass, and tidal radius) sequence of King models. The changes in the parameters are calculated for tidal perturbations, relaxation and evaporation. Clusters close to the Galactic center (less than 3 kpc) undergo core collapse in a Hubble time. The effect of tidal perturbations on energy and mass loss of the cluster is strongest between 3 and 5 kpc where it can substantially effect the evolution of the cluster. Here, depending upon their initial concentration, clusters are either tidally heated and dissolved, or forced towards a gravothermal catastrophe in times that are a fraction of a Hubble time. These inner regions of the Galaxy should be fertile territory for the search for post-collapsed clusters.


2007 ◽  
Vol 3 (S246) ◽  
pp. 251-255
Author(s):  
A. Tanikawa ◽  
T. Fukushige

AbstractWe performed N-body simulations of star clusters with primordial binaries using a new code, GORILLA. It is based on Makino and Aarseth (1992)'s integration scheme on GRAPE, and includes a special treatment for relatively isolated binaries. Using the new code, we investigated effects of hardness of primordial binaries on whole evolution of the clusters. We simulated seven N=16384 equal-mass clusters containing 10% (in mass) primordial binaries whose binding energies are 1, 3, 10, 30, 100, 300, and 1000kT, respectively. Additionally, we also simulated a cluster without primordial binaries and that in which all binaries are replaced by stars with double mass, as references of soft and hard limits, respectively. We found that, in both soft (≤ 3kT) and hard (≥ 1000kT) limits, clusters experiences deep core collapse and shows gravothermal oscillations. On the other hands, in the intermediate hardness (10-300kT), the core collapses halt halfway due an energy releases of the primordial binaries.


2009 ◽  
Vol 5 (S266) ◽  
pp. 231-237 ◽  
Author(s):  
Julio Chanamé ◽  
Justice Bruursema ◽  
Rupali Chandar ◽  
Jay Anderson ◽  
Roeland van der Marel ◽  
...  

AbstractEstablishing or ruling out, either through solid mass measurements or upper limits, the presence of intermediate-mass black holes (IMBHs; with masses of 102 − 105 M⊙) at the centers of star clusters would profoundly impact our understanding of problems ranging from the formation and long-term dynamical evolution of stellar systems, to the nature of the seeds and the growth mechanisms of supermassive black holes. While there are sound theoretical arguments both for and against their presence in today's clusters, observational studies have so far not yielded truly conclusive IMBH detections nor upper limits. We argue that the most promising approach to solving this issue is provided by the combination of measurements of the proper motions of stars at the centers of Galactic globular clusters and dynamical models able to take full advantage of this type of data set. We present a program based on HST observations and recently developed tools for dynamical analysis designed to do just that.


1996 ◽  
Vol 174 ◽  
pp. 403-404
Author(s):  
E. Vesperini ◽  
D.F. Chernoff

Recent observational searches suggest that the frequency of primordial binaries in globular clusters may reach ~ 10% (see Hut et al. 1992 for a review). Several different treatments conclude that primordial binaries are effective in halting core collapse, supporting the core and driving the post-core collapse expansion phase (Goodman & Hut 1989, McMillan et al. 1990, 1991, Gao et al. 1991, Heggie & Aarseth 1992, McMillan & Hut 1994). The abundance and binding energy distribution have a direct impact on observable characteristics of globular clusters such as the size of the core radius (Vesperini & Chernoff 1994). In this analysis we have investigated how the initial binary distribution function may be altered in the formation of a cluster; the key question we have addressed is whether it is possible for binaries, assumed to be primordial, to survive the birth of the cluster. A detailed description of our results is in Vesperini & Chernoff (1995).


2010 ◽  
Vol 6 (S272) ◽  
pp. 306-307
Author(s):  
Raman K. Prinja ◽  
Danielle Fenech

AbstractThe e-MERLIN Cyg OB2 Radio Survey (COBRaS) is designed to exploit e-MERLIN's enhanced capabilities to conduct uniquely probing, targeted deep-field mapping of the massive Cyg OB2 association in our Galaxy. The project aims to deliver (between 2010 to 2013) the most detailed radio census for the most massive OB association in the northern hemisphere, offering direct comparison to not only massive clusters in general, but also young globular clusters and super star clusters. With the COBRaS Legacy project we will assemble a uniform dataset of lasting value that is critical for advancing our understanding of current astrophysical problems in the inter-related core themes of (i) mass loss and evolution of massive stars, (ii) the formation, dynamics and content of massive OB associations, and (iii) the frequency of massive binaries and the incidence of non-thermal radiation.


Sign in / Sign up

Export Citation Format

Share Document