scholarly journals Manifestation of the Jupiter's synodic period in the solar wind, interplanetary magnetic field and geophysical parameters

2009 ◽  
Vol 5 (S264) ◽  
pp. 452-454
Author(s):  
S. N. Samsonov ◽  
N. G. Skryabin

AbstractStudying by the authors of paper of solar wind parameters, namely: density, speed and temperature and also a module of interplanetary magnetic field (IMF) intensity has allowed to find out in them fluctuations with the period of 399 days. From references it is known that this period coincidence with the synodic period of Jupiter. So long as close by the given period another source of such fluctuations is not known we have assumed that fluctuations with the period of 399 days are fluctuations with the synodic period of Jupiter. The change of the solar wind plasma parameters and IMF intensity can lead to the change of the Earth's magnetic field parameters and, as a consequence, to the change of charged particle fluxes in the Earth's magnetosphere. On this assumption the IMF intensity in the Earth's vicinity, geomagnetic disturbance (Kp-index) and riometer absorption for the years of 1986-1996 have been analyzed. The analysis of the data has shown the presence of certain changes of these physical parameters with the period of 399 days. When the Earth and Jupiter were found to be on the same magnetic field line, the IMF intensity was decreasing up to 3.0±0.57, the geomagnetic activity and riometer absorption were decreasing up to 5.2±1.46% and 9.4±2.63%, respectively.

2013 ◽  
Vol 31 (11) ◽  
pp. 1979-1992 ◽  
Author(s):  
M. Lockwood ◽  
L. Barnard ◽  
H. Nevanlinna ◽  
M. J. Owens ◽  
R. G. Harrison ◽  
...  

Abstract. We present a new reconstruction of the interplanetary magnetic field (IMF, B) for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d) composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a). Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear) fit of the form B = χ · (IDV(1d) − β)α with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010).


2008 ◽  
Vol 45 (3) ◽  
pp. 63-68 ◽  
Author(s):  
Rajesh Mishra ◽  
Rekha Agarwal ◽  
Sharad Tiwari

Solar Cycle Variation of Cosmic ray Intensity along with Interplanetary and Solar Wind Plasma ParametersGalactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V' B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V' B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23.


2020 ◽  
Author(s):  
Pavel M. Travnicek ◽  
Dave Schriver ◽  
Thomas Orlando ◽  
James A. Slavin

<pre class="western">We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the desired directions. <br />We study effects of changes of different solar wind parameters on the structure of the plasma circulation within Mercury’s magnetosphere. We focus our <br />study on the changes caused by changes in the orientation of the interplanetary magnetic field and the dynamic pressure (velocity) of the solar wind. <br />We study the structure of the of the Mercury’s magnetosphere under different solar wind conditions. Our primary focus is the assessment of the <br />precipitation levels of solar wind hydrogen on the Mercury's surface (the amount, the deposited energy, its spectra and angular distribution) and on the <br />formation of Mercury's exosphere. We examine density fluxes, energy levels and spectra of protons precipitating on Mercury’s surface as a function of <br />longitude and altitude. It has been established, that Mercury has a plasma belt formed by quasi-trapped solar wind plasma close to the Mercury’s surface. <br />Charged particles trapped in the belt mostly circle Mercury 1-2 times before they either precipitate on Mercury’s surface or escape into the Mercury’s <br />magnetospheric cavity. Lower dynamic pressure of the solar wind pushes magnetopause up above the Mercury’s surface and the plasma belt has more <br />space to develop. Its interaction with Mercury’s surface and dynamics under different solar wind conditions is essential on the precipitation of the plasma <br />on the Mercury’s surface. Higher dynamic pressure of the solar wind can push the bow shock towards Mercury’s surface and make the surface open to the <br />direct impact of the solar wind on the Mercury’s surface. Due to weak magnetic moment of the Mercury’s magnetosphere, the plasma environment at Mercury <br />is very dynamic.</pre>


2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


2011 ◽  
Vol 29 (1) ◽  
pp. 31-46 ◽  
Author(s):  
S. Baraka ◽  
L. Ben-Jaffel

Abstract. We present a follow up study of the sensitivity of the Earth's magnetosphere to solar wind activity using a particles-in-cell model (Baraka and Ben Jaffel, 2007), but here during northward Interplanetary Magnetic Field (IMF). The formation of the magnetospheric cavity and its elongation around the planet is obtained with the classical structure of a magnetosphere with parallel lobes. An impulsive disturbance is then applied to the system by changing the bulk velocity of the solar wind to simulate a decrease in the solar wind dynamic pressure followed by its recovery. In response to the imposed drop in the solar wind velocity, a gap (abrupt depression) in the incoming solar wind plasma appears moving toward the Earth. The gap's size is a ~15 RE and is comparable to the sizes previously obtained for both Bz<0 and Bz=0. During the initial phase of the disturbance along the x-axis, the dayside magnetopause (MP) expands slower than the previous cases of IMF orientations as a result of the abrupt depression. The size of the MP expands nonlinearly due to strengthening of its outer boundary by the northward IMF. Also, during the initial 100 Δt, the MP shrank down from 13.3 RE to ~9.2 RE before it started expanding, a phenomenon that was also observed for southern IMF conditions but not during the no IMF case. As soon as they felt the solar wind depression, cusps widened at high altitude while dragged in an upright position. For the field's topology, the reconnection between magnetospheric and magnetosheath fields is clearly observed in both the northward and southward cusps areas. Also, the tail region in the northward IMF condition is more confined, in contrast to the fishtail-shape obtained in the southward IMF case. An X-point is formed in the tail at ~110 RE compared to ~103 RE and ~80 RE for Bz=0 and Bz<0, respectively. Our findings are consistent with existing reports from many space observatories (Cluster, Geotail, Themis, etc.) for which predictions are proposed to test furthermore our simulation technique.


2020 ◽  
Author(s):  
Stas Barabash ◽  
Andrii Voshchepynets ◽  
Mats Holmström ◽  
Futaana Yoshifumi ◽  
Robin Ramstad

&lt;p&gt;Induced magnetospheres of non-magnetized atmospheric bodies like Mars and Venus are formed by magnetic fields of ionospheric currents induced by the convective electric field E = - V x B/c of the solar wind. The induced magnetic fields create a magnetic barrier which forms a void of the solar wind plasma, an induced magnetosphere. But what happens when the interplanetary magnetic field is mostly radial and the convective field E &amp;#8776; 0? Do a magnetic barrier and solar wind void form? If yes, how such a degenerate induced magnetosphere work? The question is directly related to the problem of the atmospheric escape due to the interaction with the solar and stellar winds. The radial interplanetary magnetic field in the inner solar system is typical for the ancient Sun conditions and exoplanets on near-star orbits. Also, the radial interplanetary field may provide stronger coupling of the near-planet environment with the solar/stellar winds and thus effectively channels the solar/stellar wind energy to the ionospheric ions. We review the current works on the subject, show examples of degenerate induced magnetospheres of Mars and Venus from Mars Express, Venus Express, and MAVEN measurements and hybrid simulations, discuss physics of degenerate induced magnetospheres, and impact of such configurations on the escape processes.&lt;/p&gt;


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chandrasekhar Bhoj ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the geomagnetic storms with the IMF for solar cycle 24. Result of the present analysis shows that IMF is geoeffective parameter but its impact varies in accordance with different time periods. The correlation coefficient between Dst and IMF found to be -0.6 for solar cycle 24.


2004 ◽  
Vol 22 (8) ◽  
pp. 2989-2996 ◽  
Author(s):  
Y. P. Maltsev ◽  
A. A. Ostapenko

Abstract. Based on magnetic data, spatial distribution of the westward ring current flowing at |z|<3 RE has been found under five levels of Dst, five levels of the interplanetary magnetic field (IMF) z component, and five levels of the solar wind dynamic pressure Psw. The maximum of the current is located near midnight at distances 5 to 7 RE. The magnitude of the nightside and dayside parts of the westward current at distances from 4 to 9 RE can be approximated as Inight=1.75-0.041 Dst, Inoon=0.22-0.013 Dst, where the current is in MA. The relation of the nightside current to the solar wind parameters can be expressed as Inight=1.45-0.20 Bs IMF + 0.32 Psw, where BsIMF is the IMF southward component. The dayside ring current poorly correlates with the solar wind parameters.


Sign in / Sign up

Export Citation Format

Share Document