Effects of the Solar Wind Conditions on Mercury's Exosphere: Hybrid Simulations

Author(s):  
Pavel M. Travnicek ◽  
Dave Schriver ◽  
Thomas Orlando ◽  
James A. Slavin

<pre class="western">We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the desired directions. <br />We study effects of changes of different solar wind parameters on the structure of the plasma circulation within Mercury’s magnetosphere. We focus our <br />study on the changes caused by changes in the orientation of the interplanetary magnetic field and the dynamic pressure (velocity) of the solar wind. <br />We study the structure of the of the Mercury’s magnetosphere under different solar wind conditions. Our primary focus is the assessment of the <br />precipitation levels of solar wind hydrogen on the Mercury's surface (the amount, the deposited energy, its spectra and angular distribution) and on the <br />formation of Mercury's exosphere. We examine density fluxes, energy levels and spectra of protons precipitating on Mercury’s surface as a function of <br />longitude and altitude. It has been established, that Mercury has a plasma belt formed by quasi-trapped solar wind plasma close to the Mercury’s surface. <br />Charged particles trapped in the belt mostly circle Mercury 1-2 times before they either precipitate on Mercury’s surface or escape into the Mercury’s <br />magnetospheric cavity. Lower dynamic pressure of the solar wind pushes magnetopause up above the Mercury’s surface and the plasma belt has more <br />space to develop. Its interaction with Mercury’s surface and dynamics under different solar wind conditions is essential on the precipitation of the plasma <br />on the Mercury’s surface. Higher dynamic pressure of the solar wind can push the bow shock towards Mercury’s surface and make the surface open to the <br />direct impact of the solar wind on the Mercury’s surface. Due to weak magnetic moment of the Mercury’s magnetosphere, the plasma environment at Mercury <br />is very dynamic.</pre>

2011 ◽  
Vol 29 (1) ◽  
pp. 31-46 ◽  
Author(s):  
S. Baraka ◽  
L. Ben-Jaffel

Abstract. We present a follow up study of the sensitivity of the Earth's magnetosphere to solar wind activity using a particles-in-cell model (Baraka and Ben Jaffel, 2007), but here during northward Interplanetary Magnetic Field (IMF). The formation of the magnetospheric cavity and its elongation around the planet is obtained with the classical structure of a magnetosphere with parallel lobes. An impulsive disturbance is then applied to the system by changing the bulk velocity of the solar wind to simulate a decrease in the solar wind dynamic pressure followed by its recovery. In response to the imposed drop in the solar wind velocity, a gap (abrupt depression) in the incoming solar wind plasma appears moving toward the Earth. The gap's size is a ~15 RE and is comparable to the sizes previously obtained for both Bz<0 and Bz=0. During the initial phase of the disturbance along the x-axis, the dayside magnetopause (MP) expands slower than the previous cases of IMF orientations as a result of the abrupt depression. The size of the MP expands nonlinearly due to strengthening of its outer boundary by the northward IMF. Also, during the initial 100 Δt, the MP shrank down from 13.3 RE to ~9.2 RE before it started expanding, a phenomenon that was also observed for southern IMF conditions but not during the no IMF case. As soon as they felt the solar wind depression, cusps widened at high altitude while dragged in an upright position. For the field's topology, the reconnection between magnetospheric and magnetosheath fields is clearly observed in both the northward and southward cusps areas. Also, the tail region in the northward IMF condition is more confined, in contrast to the fishtail-shape obtained in the southward IMF case. An X-point is formed in the tail at ~110 RE compared to ~103 RE and ~80 RE for Bz=0 and Bz<0, respectively. Our findings are consistent with existing reports from many space observatories (Cluster, Geotail, Themis, etc.) for which predictions are proposed to test furthermore our simulation technique.


2004 ◽  
Vol 22 (8) ◽  
pp. 2989-2996 ◽  
Author(s):  
Y. P. Maltsev ◽  
A. A. Ostapenko

Abstract. Based on magnetic data, spatial distribution of the westward ring current flowing at |z|<3 RE has been found under five levels of Dst, five levels of the interplanetary magnetic field (IMF) z component, and five levels of the solar wind dynamic pressure Psw. The maximum of the current is located near midnight at distances 5 to 7 RE. The magnitude of the nightside and dayside parts of the westward current at distances from 4 to 9 RE can be approximated as Inight=1.75-0.041 Dst, Inoon=0.22-0.013 Dst, where the current is in MA. The relation of the nightside current to the solar wind parameters can be expressed as Inight=1.45-0.20 Bs IMF + 0.32 Psw, where BsIMF is the IMF southward component. The dayside ring current poorly correlates with the solar wind parameters.


2018 ◽  
Vol 614 ◽  
pp. A132 ◽  
Author(s):  
S. Fatemi ◽  
N. Poirier ◽  
M. Holmström ◽  
J. Lindkvist ◽  
M. Wieser ◽  
...  

Aims. The lack of an upstream solar wind plasma monitor when a spacecraft is inside the highly dynamic magnetosphere of Mercury limits interpretations of observed magnetospheric phenomena and their correlations with upstream solar wind variations. Methods. We used AMITIS, a three-dimensional GPU-based hybrid model of plasma (particle ions and fluid electrons) to infer the solar wind dynamic pressure and Alfvén Mach number upstream of Mercury by comparing our simulation results with MESSENGER magnetic field observations inside the magnetosphere of Mercury. We selected a few orbits of MESSENGER that have been analysed and compared with hybrid simulations before. Then we ran a number of simulations for each orbit (~30–50 runs) and examined the effects of the upstream solar wind plasma variations on the magnetic fields observed along the trajectory of MESSENGER to find the best agreement between our simulations and observations. Results. We show that, on average, the solar wind dynamic pressure for the selected orbits is slightly lower than the typical estimated dynamic pressure near the orbit of Mercury. However, we show that there is a good agreement between our hybrid simulation results and MESSENGER observations for our estimated solar wind parameters. We also compare the solar wind dynamic pressure inferred from our model with those predicted previously by the WSA-ENLIL model upstream of Mercury, and discuss the agreements and disagreements between the two model predictions. We show that the magnetosphere of Mercury is highly dynamic and controlled by the solar wind plasma and interplanetary magnetic field. In addition, in agreement with previous observations, our simulations show that there are quasi-trapped particles and a partial ring current-like structure in the nightside magnetosphere of Mercury, more evident during a northward interplanetary magnetic field (IMF). We also use our simulations to examine the correlation between the solar wind dynamic pressure and stand-off distance of the magnetopause and compare it with MESSENGER observations. We show that our model results are in good agreement with the response of the magnetopause to the solar wind dynamic pressure, even during extreme solar events. We also show that our model can be used as a virtual solar wind monitor near the orbit of Mercury and this has important implications for interpretation of observations by MESSENGER and the future ESA/JAXA mission to Mercury, BepiColombo.


2009 ◽  
Vol 5 (S264) ◽  
pp. 452-454
Author(s):  
S. N. Samsonov ◽  
N. G. Skryabin

AbstractStudying by the authors of paper of solar wind parameters, namely: density, speed and temperature and also a module of interplanetary magnetic field (IMF) intensity has allowed to find out in them fluctuations with the period of 399 days. From references it is known that this period coincidence with the synodic period of Jupiter. So long as close by the given period another source of such fluctuations is not known we have assumed that fluctuations with the period of 399 days are fluctuations with the synodic period of Jupiter. The change of the solar wind plasma parameters and IMF intensity can lead to the change of the Earth's magnetic field parameters and, as a consequence, to the change of charged particle fluxes in the Earth's magnetosphere. On this assumption the IMF intensity in the Earth's vicinity, geomagnetic disturbance (Kp-index) and riometer absorption for the years of 1986-1996 have been analyzed. The analysis of the data has shown the presence of certain changes of these physical parameters with the period of 399 days. When the Earth and Jupiter were found to be on the same magnetic field line, the IMF intensity was decreasing up to 3.0±0.57, the geomagnetic activity and riometer absorption were decreasing up to 5.2±1.46% and 9.4±2.63%, respectively.


2015 ◽  
Vol 1 (3) ◽  
pp. 11-20 ◽  
Author(s):  
Надежда Куражковская ◽  
Nadezhda Kurazhkovskaya ◽  
Борис Клайн ◽  
Boris Klain

We present the results of investigation of the influence of geomagnetic activity, solar wind and parameters of the interplanetary magnetic field (IMF) on properties of the intermittency of midlatitude burst series of Pi2 geomagnetic pulsations observed during magnetospheric substorms on the nightside (substorm Pi2) and in the absence of these phenomena (nonsub-storm Pi2). We considered the index α as a main characteristic of intermittency of substorm and nonsubstorm Pi2 pulsations. The index α characterizes the slope of the cumulative distribution function of Pi2 burst amplitudes. The study indicated that the value and dynamics of the index α varies depending on the planetary geomagnetic activity, auroral activity and the intensity of magnetospheric ring currents. In addition, the forms of dependences of the index α on the density n, velocity V, dynamic pressure Pd of the solar wind and IMF Bx-component are different. The behavior of the index α depending on the module of B, By- and Bz-components is similar. We found some critical values of V, Pd, B, By- and Bz-components, after reaching of which the turbulence of the magnetotail plasma during substorm development is decreased. The revealed patterns of the intermittency of Pi2 pulsations can be used for qualitative assessment of turbulence level in the magnetotail plasma depending on changing interplanetary conditions.


2006 ◽  
Vol 24 (11) ◽  
pp. 3011-3026 ◽  
Author(s):  
F. Pitout ◽  
C. P. Escoubet ◽  
B. Klecker ◽  
H. Rème

Abstract. We present a statistical study of four years of Cluster crossings of the mid-altitude cusp. In this first part of the study, we start by introducing the method we have used a) to define the cusp properties, b) to sort the interplanetary magnetic field (IMF) conditions or behaviors into classes, c) to determine the proper time delay between the solar wind monitors and Cluster. Out of the 920 passes that we have analyzed, only 261 fulfill our criteria and are considered as cusp crossings. We look at the size, location and dynamics of the mid-altitude cusp under various IMF orientations and solar wind conditions. For southward IMF, Bz rules the latitudinal dynamics, whereas By governs the zonal dynamics, confirming previous works. We show that when |By| is larger than |Bz|, the cusp widens and its location decorrelates from By. We interpret this feature in terms of component reconnection occurring under By-dominated IMF. For northward IMF, we demonstrate that the location of the cusp depends primarily upon the solar wind dynamic pressure and upon the Y-component of the IMF. Also, the multipoint capability of Cluster allows us to conclude that the cusp needs typically more than ~20 min to fully adjust its location and size in response to changes in external conditions, and its speed is correlated to variations in the amplitude of IMF-Bz. Indeed, the velocity in °ILAT/min of the cusp appears to be proportional to the variation in Bz in nT: Vcusp=0.024 ΔBz. Finally, we observe differences in the behavior of the cusp in the two hemispheres. Those differences suggest that the cusp moves and widens more freely in the summer hemisphere.


2013 ◽  
Vol 31 (11) ◽  
pp. 1979-1992 ◽  
Author(s):  
M. Lockwood ◽  
L. Barnard ◽  
H. Nevanlinna ◽  
M. J. Owens ◽  
R. G. Harrison ◽  
...  

Abstract. We present a new reconstruction of the interplanetary magnetic field (IMF, B) for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d) composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a). Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear) fit of the form B = χ · (IDV(1d) − β)α with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010).


2020 ◽  
Author(s):  
Stas Barabash ◽  
Andrii Voshchepynets ◽  
Mats Holmström ◽  
Futaana Yoshifumi ◽  
Robin Ramstad

&lt;p&gt;Induced magnetospheres of non-magnetized atmospheric bodies like Mars and Venus are formed by magnetic fields of ionospheric currents induced by the convective electric field E = - V x B/c of the solar wind. The induced magnetic fields create a magnetic barrier which forms a void of the solar wind plasma, an induced magnetosphere. But what happens when the interplanetary magnetic field is mostly radial and the convective field E &amp;#8776; 0? Do a magnetic barrier and solar wind void form? If yes, how such a degenerate induced magnetosphere work? The question is directly related to the problem of the atmospheric escape due to the interaction with the solar and stellar winds. The radial interplanetary magnetic field in the inner solar system is typical for the ancient Sun conditions and exoplanets on near-star orbits. Also, the radial interplanetary field may provide stronger coupling of the near-planet environment with the solar/stellar winds and thus effectively channels the solar/stellar wind energy to the ionospheric ions. We review the current works on the subject, show examples of degenerate induced magnetospheres of Mars and Venus from Mars Express, Venus Express, and MAVEN measurements and hybrid simulations, discuss physics of degenerate induced magnetospheres, and impact of such configurations on the escape processes.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document