scholarly journals Internal Structure of Stellar Clusters: Geometry of Star Formation

2010 ◽  
Vol 6 (S270) ◽  
pp. 81-88
Author(s):  
Emilio J. Alfaro ◽  
Néstor Sánchez

AbstractThe study of the internal structure of star clusters provides important clues concerning their formation mechanism and dynamical evolution. There are both observational and numerical evidences indicating that open clusters evolve from an initial clumpy structure, presumably a direct consequence of the formation in a fractal medium, toward a centrally condensed state. This simple picture has, however, several drawbacks. There can be very young clusters exhibiting radial patterns maybe reflecting the early effect of gravity on primordial gas. There can be also very evolved clusters showing fractal patterns that either have survived through time or have been generated subsequently by some (unknown) mechanism. Additionally, the fractal structure of some open clusters is much clumpier than the average structure of the interstellar medium in the Milky Way, although in principle a very similar structure should be expected. Here we summarize and discuss observational and numerical results concerning this subject.

2015 ◽  
Vol 12 (S316) ◽  
pp. 255-256
Author(s):  
Peter Frinchaboy ◽  
Benjamin Thompson

AbstractStudying the internal dynamics of stellar clusters is conducted primarily through N-Body simulations. One of the major inputs into N-Body simulations is the binary star frequency and mass distribution, which is currently constrained by relations derived from field binary stars. However to truly understand how clustered environments evolve, binary data from within star clusters is needed including masses. Detailed information on binaries masses, primary and secondary, in star clusters has been limited to date. The primary technique currently available has been radial velocity surveys that are limited in depth. Using previous two-band photometry-based studies that may cover different mass ranges produce potentially discrepant interpretations of the observed binary population. We introduce a new binary detection method, Binary INformation from Open Clusters Using SEDs (BINOCS) that covers the wide mass range needed to improve cluster N-body simulation inputs and comparisons. Using newly-observed multi-wavelength photometric catalogs (0.3 - 8 microns) of the key open clusters with a range of ages, we can show that the BINOCS method determines accurate binary component masses for unresolved cluster binaries through comparison to available RV-based studies. Using this method, we present results on the dynamical evolution of binaries from 0.4 - 2.5 solar masses within five prototypical clusters, spaning 30 Myr to 3.5 Gyr, and how the binary populations evolve as a function of mass.


1998 ◽  
Vol 11 (1) ◽  
pp. 430-432
Author(s):  
Ted Von Hippel

The study of cluster white dwarfs (WDs) has been invigorated recently bythe Hubble Space Telescope (HST). Recent WD studies have been motivated by the new and independent cluster distance (Renzini et al. 1996), age (von Hippel et al. 1995; Richer et al. 1997), and stellar evolution (Koester & Reimers 1996) information that cluster WDs can provide. An important byproduct of these studies has been an estimate of the WD mass contribution in open and globular clusters. The cluster WD mass fraction is of importance for understanding the dynamical state and history of star clusters. It also bears an important connection to the WD mass fractions of the Galactic disk and halo. Current evidence indicates that the open clusters (e.g. von Hippel et al. 1996; Reid this volume) have essentially the same luminosity function (LF) as the solar neighborhood population. The case for the halo is less clear, despite the number of very good globular cluster LFs down to nearly 0.1 solar masses (e.g. Cool et al. 1996; Piotto, this volume), as the field halo LF is poorly known. For most clusters dynamical evolution should cause evaporation of the lowest mass members, biasing clusters to have flatter present-day mass functions (PDMFs) than the disk and halo field populations. Dynamical evolution should also allow cluster WDs to escape, though not in the same numbers as the much lower mass main sequence stars. The detailed connection between cluster PDMFs and the field IMF awaits elucidation from observations and the new combined N-body and stellar evolution models (Tout, this volume). Nevertheless, the WD mass fraction of clusters already provides an estimate for the WD mass fraction of the disk and halo field populations. A literature search to collect cluster WDs and a simple interpretive model follow. This is a work in progress and the full details of the literature search and the model will be published elsewhere.


2009 ◽  
Vol 5 (S266) ◽  
pp. 347-350
Author(s):  
Andrea V. Ahumada ◽  
Juan J. Clariá ◽  
Eduardo Bica ◽  
Andrés E. Piatti ◽  
João F. C. Santos ◽  
...  

AbstractWe present flux-calibrated integrated spectra in the optical spectral range of Galactic open clusters (GOCs) and Magellanic Cloud (MC) stellar clusters (SCs) obtained at CASLEO (Argentina). The SC parameters were derived using the equivalent-width (EW) method and the template-matching procedure by comparing the line strengths and continuum distribution of the cluster spectra with those of template spectra with known parameters. MC cluster reddening values were also estimated by interpolation between the available extinction maps. The derived ages for the GOCs range from 3 Myr to 4 Gyr, while those of the MC SCs vary from 3 Myr to 7 Gyr. E(B−V) colour-excess values in the MCs appear to be all lower than 0.17 mag, while those of the GOCs range from 0.00 to 2.40 mag. The present data led us to upgrade the spectral libraries of reference spectra or templates of solar and MC metallicities.


2009 ◽  
Vol 5 (S266) ◽  
pp. 487-490
Author(s):  
D. B. Pavani ◽  
L. O. Kerber ◽  
E. Bica ◽  
W. J. Maciel

AbstractOpen cluster remnants (OCRs) are fundamental objects to investigate open cluster dissolution processes (e.g., Bica et al. 2001; Carraro 2002; Pavani et al. 2003; Carraro et al. 2007; Pavani & Bica 2007). They are defined as poorly populated concentrations of stars, with enough members to show evolutionary sequences in colour–magnitude diagrams (CMDs) as a result of the dynamical evolution of an initially more massive physical system. An OCR is intrinsically poorly populated, which makes its differentiation from field-star fluctuations difficult. Among the possible approaches to establish the nature of OCRs, we adopted CMD analysis combined with a robust statistical tool applied to 2mass data. In addition, photometry is the main information source available for possible OCRs (POCRs). We developed a statistical diagnostic tool to analyse the CMDs of POCRs and verify them as physical systems, explore membership probabilityies taking into account field contamination and derive age, distance and reddening values in a self-consistent way. We present the results of our analysis of 88 POCRs that are part of a larger sample that is widely distributed across the sky, with a significant density contrast of bright stars compared to the Galactic field. The 88 objects are projected onto low-density Galactic fields, at relatively high latitudes (|b| > 15°). Studies of larger POCR samples will provide a better understanding of OCR properties and constraints for theoretical models, including new insights into the evolution of open clusters and their dissolution rates. The results of this ongoing survey will provide a general picture of these fossil stellar systems and their connection to Galactic-disk evolution.


2019 ◽  
Vol 488 (2) ◽  
pp. 1635-1651 ◽  
Author(s):  
M S Angelo ◽  
A E Piatti ◽  
W S Dias ◽  
F F S Maia

Abstract The study of dynamical properties of Galactic open clusters (OCs) is a fundamental prerequisite for the comprehension of their dissolution processes. In this work, we characterized 12 OCs, namely: Collinder 258, NGC 6756, Czernik 37, NGC 5381, Ruprecht 111, Ruprecht 102, NGC 6249, Basel 5, Ruprecht 97, Trumpler 25, ESO 129−SC32, and BH 150, projected against dense stellar fields. In order to do that, we employed Washington CT1 photometry and Gaia DR2 astrometry, combined with a decontamination algorithm applied to the three-dimensional astrometric space of proper motions and parallaxes. From the derived membership likelihoods, we built decontaminated colour–magnitude diagrams, while structural parameters were obtained from King profiles fitting. Our analysis revealed that they are relatively young OCs (log(t  yr−1) ∼7.3–8.6), placed along the Sagittarius spiral arm, and at different internal dynamical stages. We found that the half-light radius to Jacobi radius ratio, the concentration parameter and the age to relaxation time ratio describe satisfactorily their different stages of dynamical evolution. Those relative more dynamically evolved OCs have apparently experienced more important low-mass star loss.


2019 ◽  
Vol 490 (2) ◽  
pp. 1821-1842 ◽  
Author(s):  
L Casamiquela ◽  
S Blanco-Cuaresma ◽  
R Carrera ◽  
L Balaguer-Núñez ◽  
C Jordi ◽  
...  

ABSTRACT The study of open-cluster chemical abundances provides insights on stellar nucleosynthesis processes and on Galactic chemo-dynamical evolution. In this paper we present an extended abundance analysis of 10 species (Fe, Ni, Cr, V, Sc, Si, Ca, Ti, Mg, O) for red giant stars in 18 OCCASO clusters. This represents a homogeneous sample regarding the instrument features, method, line list and solar abundances from confirmed member stars. We perform an extensive comparison with previous results in the literature, and in particular with the Gaia FGK Benchmark stars Arcturus and $\mu$-Leo. We investigate the dependence of [X/Fe] with metallicity, Galactocentric radius (6.5 kpc < RGC < 11 kpc), age (0.3 Gyr < Age < 10 Gyr), and height above the plane (|z| < 1000 pc). We discuss the observational results in the chemo-dynamical framework, and the radial migration impact when comparing with chemical evolution models. We also use APOGEE DR14 data to investigate the differences between the abundance trends in RGC and |z| obtained for clusters and for field stars.


2019 ◽  
Vol 624 ◽  
pp. A26 ◽  
Author(s):  
Souradeep Bhattacharya ◽  
Kaushar Vaidya ◽  
W. P. Chen ◽  
Giacomo Beccari

Context. Blue straggler stars (BSSs) are observed in Galactic globular clusters and old open clusters. The radial distribution of BSSs has been used to diagnose the dynamical evolution of globular clusters. For the first time, with a reliable sample of BSSs identified with Gaia DR2, we conduct such an analysis for an open cluster. Aims. We aim to identify members, including BSSs, of the oldest known Galactic open cluster Berkeley 17 with the Gaia DR2 proper motions and parallaxes. We study the radial distribution of the BSS population to understand the dynamical evolution of the cluster. Methods. We selected cluster members to populate the colour magnitude diagram in the Gaia filters. Cluster parameters are derived using the brightest members. The BSSs and giant branch stars are identified, and their radial distributions are compared. The segregation of BSSs is also evaluated with respect to the giant branch stars using the minimum spanning tree (MST) analysis. Results. We determine Berkeley 17 to be at 3138.6−352.9+285.5 pc. We find 23 BSS cluster members, only two of which were previously identified. We find a bimodal radial distribution of BSSs supported by findings from the MST method. Conclusions. The bimodal radial distribution of BSSs in Berkeley 17 indicates that they have just started to sink towards the cluster centre, placing Berkeley 17 with globular clusters of intermediate dynamical age. This is the first such determination for an open cluster.


2020 ◽  
Vol 495 (2) ◽  
pp. 1978-1983
Author(s):  
Nate Bastian ◽  
Sebastian Kamann ◽  
Louis Amard ◽  
Corinne Charbonnel ◽  
Lionel Haemmerlé ◽  
...  

ABSTRACT We address the origin of the observed bimodal rotational distribution of stars in massive young and intermediate age stellar clusters. This bimodality is seen as split main sequences at young ages and also has been recently directly observed in the Vsini distribution of stars within massive young and intermediate age clusters. Previous models have invoked binary interactions as the origin of this bimodality, although these models are unable to reproduce all of the observational constraints on the problem. Here, we suggest that such a bimodal rotational distribution is set-up early within a cluster’s life, i.e. within the first few Myr. Observations show that the period distribution of low-mass ($\lesssim\! 2 \, \mathrm{M}_\odot$) pre-main-sequence (PMS) stars is bimodal in many young open clusters, and we present a series of models to show that if such a bimodality exists for stars on the PMS that it is expected to manifest as a bimodal rotational velocity (at fixed mass/luminosity) on the main sequence for stars with masses in excess of ∼1.5 M⊙. Such a bimodal period distribution of PMS stars may be caused by whether stars have lost (rapid rotators) or been able to retain (slow rotators) their circumstellar discs throughout their PMS lifetimes. We conclude with a series of predictions for observables based on our model.


1993 ◽  
Vol 137 ◽  
pp. 746-748 ◽  
Author(s):  
S. Frandsen ◽  
H. Kjeldsen

The special opportunities offered by δ-Scuti stars are the following: -They regularly oscillate in several modes, and with high precision observations one has measured of the order 5 modes (Michel and Baglin 1991-The excitation is a very delicate and therefore a very sensitive measure of the internal structure.-They are found in open clusters which constitute a very rich scenario for tests of the theory of stellar structure and evolution. This makes it feasible to observe several stars simultaneously and gain more results than for single stars.-The brightness is moderately high and still they live long enough to be present in a variety of clusters and in the field as well.


Sign in / Sign up

Export Citation Format

Share Document