scholarly journals Small and Robotic Telescopes in the Era of Massive Time-Domain Surveys

2011 ◽  
Vol 7 (S285) ◽  
pp. 235-238
Author(s):  
M. F. Bode ◽  
W. T. Vestrand

AbstractWe have entered an era in time-domain astronomy in which the detected rate of explosive transients and important ephemeral states in persistent objects threatens to overwhelm the world's supply of traditional follow-up telescopes. As new, comprehensive time-domain surveys become operational and wide-field multi-messenger observatories come on-line, that problem will become more acute. The goal of this workshop was to foster discussion about how autonomous robotic telescopes and small-aperture conventional telescopes can be employed in the most effective ways to help deal with the coming deluge of scientifically interesting follow-up opportunities. Discussion topics included the role of event brokers, automated event triage, the establishment of cooperative global telescope networks, and real-time coordination of observations at geographically diverse sites. It therefore included brief overviews of the current diverse landscape of telescopes and their interactions, and also considered planned and potential new facilities and operating models.

2011 ◽  
Vol 7 (S285) ◽  
pp. 165-170
Author(s):  
Joshua S. Bloom

AbstractBy the end of the last decade, robotic telescopes were established as effective alternatives to the traditional role of astronomer in planning, conducting and reducing time-domain observations. By the end of this decade, machines will play a much more central role in the discovery and classification of time-domain events observed by such robots. While this abstraction of humans away from the real-time loop (and the nightly slog of the nominal scientific process) is inevitable, just how we will get there as a community is uncertain. I discuss the importance of machine learning in astronomy today, and project where we might consider heading in the future. I will also touch on the role of people and organisations in shaping and maximising the scientific returns of the coming data deluge.


Author(s):  
J. R. Mullaney ◽  
L. Makrygianni ◽  
V. Dhillon ◽  
S. Littlefair ◽  
K. Ackley ◽  
...  

Abstract The past few decades have seen the burgeoning of wide-field, high-cadence surveys, the most formidable of which will be the Legacy Survey of Space and Time (LSST) to be conducted by the Vera C. Rubin Observatory. So new is the field of systematic time-domain survey astronomy; however, that major scientific insights will continue to be obtained using smaller, more flexible systems than the LSST. One such example is the Gravitational-wave Optical Transient Observer (GOTO) whose primary science objective is the optical follow-up of gravitational wave events. The amount and rate of data production by GOTO and other wide-area, high-cadence surveys presents a significant challenge to data processing pipelines which need to operate in near-real time to fully exploit the time domain. In this study, we adapt the Rubin Observatory LSST Science Pipelines to process GOTO data, thereby exploring the feasibility of using this ‘off-the-shelf’ pipeline to process data from other wide-area, high-cadence surveys. In this paper, we describe how we use the LSST Science Pipelines to process raw GOTO frames to ultimately produce calibrated coadded images and photometric source catalogues. After comparing the measured astrometry and photometry to those of matched sources from PanSTARRS DR1, we find that measured source positions are typically accurate to subpixel levels, and that measured L-band photometries are accurate to $\sim50$ mmag at $m_L\sim16$ and $\sim200$ mmag at $m_L\sim18$ . These values compare favourably to those obtained using GOTO’s primary, in-house pipeline, gotophoto, in spite of both pipelines having undergone further development and improvement beyond the implementations used in this study. Finally, we release a generic ‘obs package’ that others can build upon, should they wish to use the LSST Science Pipelines to process data from other facilities.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Marcin Sokołowski ◽  
Katarzyna Małek ◽  
Lech W. Piotrowski ◽  
Grzegorz Wrochna

The detection of short optical transients of astrophysical origin in real time is an important task for existing robotic telescopes. The faster a new optical transient is detected, the earlier follow-up observations can be started. The sooner the object is identified, the more data can be collected before the source fades away, particularly in the most interesting early period of the transient. In this the real-time pipeline designed for identification of optical flashes with the “Pi of the Sky” project will be presented in detail together with solutions used by other experiments.


Author(s):  
A. Kumar ◽  
S. B. Pandey ◽  
R. Gupta ◽  
A. Aryan ◽  
A. J. Castro-Tirado ◽  
...  

Newly installed 3.6m DOT at Nainital (Uttarakhand) is a novel facility for the time domain astronomy. Because of the longitudinal advantage of India, it could be used to study new transients reported by a global network of robotic telescopes. Observations with the 4K × 4K CCD Imager at the axial port of the 3.6m DOT will be very helpful in the near future towards understanding the different physical aspects of time-critical events, e.g., Gamma-ray bursts (GRBs), Supernovae, Gravitational wave candidates, etc. Using the Imager with broadband filters (Bessel UBVRI and SDSS ugriz), ~6.5' × 6.5' images could be obtained to attempt various science goals in synergy with other multi-band facilities. In this study, we present an analysis of unpublished R-band data of GRB 171205A/SN 2017iuk spanning between ~12 to 105 days since burst, that observed using the 3.6m DOT with 4K × 4K CCD Imager. In the R-band light curve, a bump appears to start from ~3 days, which shows the peak at ~15 days after the burst, clearly indicates photometric evidence of association of SN with GRB 171205A.


2011 ◽  
Vol 7 (S285) ◽  
pp. 352-354
Author(s):  
T. A. Lister

AbstractAn increasing number of sky surveys is already on-line or soon will be, leading to a large boost in the detection of Solar System objects of all types. For Near-Earth Objects (NEOs) that could potentially hit the Earth, timely follow-up is essential. I describe the development of an automated system which responds to new detections of NEOs from Pan-STARRS and automatically observes them with the LCOGT telescopes. I present results from the first few months of operation, and plans for the future with the 6-site, 40-telescope global LCOGT Network.


2007 ◽  
Vol 3 (S249) ◽  
pp. 25-30
Author(s):  
Shude Mao ◽  
Eamonn Kerins ◽  
Nicholas J. Rattenbury

AbstractMicrolensing light curves due to single stars are symmetric and typically last for a month. So far about 4000 microlensing events have been discovered in real-time, the vast majority toward the Galactic centre. The presence of planets around the primary lenses induces deviations in the usual light curve which lasts from hours (for an Earth-mass [M⊕] planet) to days (for a Jupiter-mass [Mj] planet). Currently the survey teams, OGLE and MOA, discover and announce microlensing events in real-time, and follow-up teams (together with the survey teams) monitor selected events intensively (usually with high magnification) in order to identify anomalies caused by planets. So far four extrasolar planets have been discovered using the microlensing technique, with half a dozen new planet candidates identified in 2007 (yet to be published). Future possibilities include a network of wide-field 2m-class telescopes from the ground (which can combine survey and follow-up in the same setup) and a 1m-class survey telescope from space.


2002 ◽  
Vol 12 ◽  
pp. 239-241
Author(s):  
Hermann Boehnhardt ◽  
Olivier Hainaut

AbstractWe propose a wide-shallow TNO search to be done with the Wide Field Imager (WFI) instrument at the 2.2m MPG/ESO telescope in La Silla/Chile. The WFI is a half-deg camera equipped with an 8kx8k CCD (0.24 arcsec/pixel). It was used in 1999 to run a pilot project for a TNO search. Using the images of typically 24mag limiting brightness and an automatic detection software (developed at ESO Chile) it was possible to discover 6 TNOs in a small search area of 1.5 sdeg. The project is now continued on a somewhat larger scale in order to discover more TNOs in a systematic way and to reach operational status for a full on-line detection of the objects as well as astrometric and photometric reduction at the telescope. The final goal is to perform a survey of a major part of the sky (typically 2000 sdeg in and out of the ecliptic) down to 24mag. Follow-up astrometry and photometry of the expected more than 3000 discovered objects will secure their orbital and physical characterisation for synoptic dynamical and taxonomic studies of the transneptunian population.


2001 ◽  
Vol 183 ◽  
pp. 240-244
Author(s):  
Hong-Kyu Moon ◽  
Moo-Young Chun ◽  
Yong-Ik Byun ◽  
Wonyong Han ◽  
Seung-Lee Kim ◽  
...  

AbstractIn 2000, Korea Astronomy Observatory launched the Near-Earth Object Patrol (NEOPAT) program. NEOPAT has conducted follow-up observations of NEOCP (NEO Confirmation Page) objects and discovered 52 new main-belt asteroids during the observation runs. We initiated collaboration with the Yonsei Survey Telescopes for Astronomical Research (YSTAR) team for NEO search. Wide-field of view, fast read-out time, and fully autonomous data pipeline will enable us to detect and track NEOs with a high efficiency. Scheduled to begin active operations in mid-2001, our survey system is going to be the first network of robotic telescopes for NEO search with automatic access to both hemispheres.


1968 ◽  
Vol 1 (2) ◽  
pp. 128
Author(s):  
R. A. Kennedy

Bell Telephone Laboratories has established an on-line circulation system linking two terminals in each of its three largest libraries to a central computer. Objectives include imporved service through computer pooling of collections, immediate reporting on publication  availability or a borrower's record, automatice reserve follow-up; reduced labor; and increased management information. loans, returns, reserves and many queries are handled in real time. Input may be keyboard only or combined with card reading, to handle all publications with borrower present or absent. BELLREL is now being used for some 1500 transactions per day.


Sign in / Sign up

Export Citation Format

Share Document