scholarly journals H-cluster stars

2012 ◽  
Vol 8 (S291) ◽  
pp. 435-437
Author(s):  
X. Y. Lai ◽  
R. X. Xu

AbstractThe study of dense matter at ultra-high density has a very long history, which is meaningful for us to understand not only cosmic events in extreme circumstances but also fundamental laws of physics. In compact stars at only a few nuclear densities but low temperature, quarks could be interacting strongly with each other. That might produce quarks grouped in clusters, although the hypothetical quark-clusters in cold dense matter have not been confirmed due to the lack of both theoretical and experimental evidence. A so-called H-cluster matter is proposed in this paper as the nature of dense matter in reality.Motivated by recent lattice QCD simulations of the H-dibaryons (with structure uuddss), we are therefore considering here a possible kind of quark-clusters, H-clusters, that could emerge inside compact stars during their initial cooling, as the dominant components inside (the degree of freedom could then be H-clusters there). We study the stars composed of H-clusters, i.e., H-cluster stars, and derive the dependence of their maximum mass on the in-medium stiffening effect, showing that the maximum mass could be well above 2 M⊙ as observed and that the resultant mass-radius relation fits the measurement of the rapid burster under reasonable parameters. Besides a general understanding of different manifestations of compact stars, we expect further observational and experimental tests for the H-cluster stars in the future.

2012 ◽  
Vol 10 ◽  
pp. 137-146
Author(s):  
SHI DAI ◽  
RENXIN XU

The matter inside pulsar-like compact stars could be in a quark-cluster phase since in cold dense matter at a few nuclear densities (ρ ~ 2 - 10ρ0), quarks could be coupled still very strongly and condensate in position space to form quark clusters. Quark-cluster stars are chromatically confined and could initially be bare, therefore the surface properties of quark-cluster stars would be quite different from that of conventional neutron stars. Some facts indicate that a bare and self-confined surface of pulsar-like compact stars might be necessary in order to naturally understand different observational manifestations. On one hand, as for explaining the drifting sub-pulse phenomena, the binding energy of particles on pulsar surface should be high enough to produce vacuum gaps, which indicates that pulsar's surface might be strongly self-confined. On the other hand, a bare surface of quark-cluster star can overcome the baryon contamination problem of γ-ray burst as well as promote a successful core-collapse supernova. What is more, the non-atomic thermal spectra of dead pulsars may indicate also a bare surface without atmosphere, and the hydro-cyclotron oscillation of the electron sea above the quark-cluster star surface could be responsible for those absorption features detected. These hints could reflect the property of compact star's surface and possibly the state of condensed matter inside, and then might finally result in identifying quark-cluster stars.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 117-124
Author(s):  
XIAOYU LAI ◽  
RENXIN XU

The state of cold quark matter at supra-nuclear density, depending on the non-perturbative nature of quantum chromo-dynamics (QCD), is essential for modelling pulsars. It is conventionally thought that the state equation of dense matter softens and thus cannot result in high maximum mass if pulsars are quark stars. However, this standard point of view would be revisited and updated if the strong coupling between quarks at realistic baryon densities of compact stars could render quarks grouped in quark-clusters, because the state equation of clustering quark matter stiffs to support compact stars with maximum mass M max > 2M⊙. Although the hypothetical quark-clusters has not been confirmed due to the lack of both theoretical and experimental evidence, the astrophysical observations of pulsars (e.g. pulsar-mass) could help us to explore the properties of cold quark matter.


2021 ◽  
Vol 11 (1) ◽  
pp. 410
Author(s):  
Yu-Hsien Lin ◽  
Yu-Ting Lin ◽  
Yen-Jun Chiu

On the basis of a full-appendage DARPA SUBOFF model (DTRC model 5470), a scale (λ = 0.535) semi-autonomous submarine free-running model (SFRM) was designed for testing its manoeuvrability and stability in the constrained water. Prior to the experimental tests of the SFRM, a six-degree-of-freedom (6-DOF) manoeuvre model with an autopilot system was developed by using logic operations in MATLAB. The SFRM’s attitude and its trim polygon were presented by coping with the changes in mass and trimming moment. By adopting a series of manoeuvring tests in empty tanks, the performances of the SFRM were introduced in cases of three sailing speeds. In addition, the PD controller was established by considering the simulation results of these manoeuvring tests. The optimal control gains with respect to each manoeuvring test can be calculated by using the PID tuner in MATLAB. Two sets of control gains derived from the optimal characteristics parameters were compared in order to decide on the most appropriate PD controller with the line-of-sight (LOS) guidance algorithm for the SFRM in the autopilot simulation. Eventually, the simulated trajectories and course angles of the SFRM would be illustrated in the post-processor based on the Cinema 4D modelling.


1989 ◽  
Vol 151 ◽  
Author(s):  
H. J. M. Swagten ◽  
S. J. E. A. Eltink ◽  
W. J. M. De Jonge

ABSTRACTIn this paper experimental evidence is presented for the carrier concentration dependence of the magnetic properties of Sn0.97Mn0.03Te, yielding a critical concentration above which ferromagnetic interactions are dominant. The observed behavior can be fairly well explained within a modified RKKY-model. Preliminary experiments on the low temperature magnetic phases indicate re-entrant spinglass behavior, which is qualitatively described with the spinglass model of Sherrington and Kirkpatrick.


2020 ◽  
Vol 102 (4) ◽  
Author(s):  
Armen Sedrakian ◽  
Fridolin Weber ◽  
Jia Jie Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document