scholarly journals Exploration of Galactic Structures beyond the Sun toward the anti-center of the Milky Way

2013 ◽  
Vol 9 (S298) ◽  
pp. 450-450
Author(s):  
Yan Xu ◽  
Heidi Newberg

AbstractWe map the stellar distribution on Hess diagram in the Anti-Center roughly in the boxes 130<l<230, −30<b<−10 and 10<b<30. There are ‘extra components’ associated with the anti-center structures of figure 1 of Newberg et al. (2002). The turnoff point of the structure in the North sky is at 16m.5 and the turnoff point in the South is at 17m.5. In our work, these structures can be found in all of the longitude in our box that can't be explained by standard thin or thick disk models. The distance of the North structure is about 2 kpc (we call it the North near structure) and the galactic height is about 0.7 kpc, the distance of the South structure is about 4 – 6 kpc (we call it the South middle structure). The Vgsr distribution of stars selected along the North near structure has a kinematic distribution similar to that of thick disk stars. But the metallicities of these stars are quite similar to the metallicity distribution of thin disk stars. We try to explain these structures with wave structure of the Galactic plane.

Author(s):  
K. Vieira ◽  
V. Korchagin ◽  
A. Lutsenko

Using GAIA EDR3 catalog, we present the detailed analysis of the two-component Milky Way stellar disk in the solar neighborhood. To determine the kinematical properties of the thin and of the Thick disks, we select the complete sample of about 278,000 evolved red giant branch (RGB) stars distributed in the cylinder of 1 kpc radius and 0.5 kpc height centered at the Sun. We measured the following mean velocities and dispersions for the thin and the Thick disks, respectively: [Formula: see text][Formula: see text]km s[Formula: see text] with [Formula: see text][Formula: see text]km s[Formula: see text], and [Formula: see text][Formula: see text]km s[Formula: see text] with [Formula: see text][Formula: see text]km s[Formula: see text]. Errors in mean velocities and dispersions are all less than 1[Formula: see text]km s[Formula: see text]. Same values were computed on much smaller subsamples of our Gaia data with RAVE DR5 [Fe/H] values, from which a metallicity selection was added. Results are basically the same. We find that up to 500 pc height above/below the galactic plane, Thick disk stars comprise about half the stars of the disk. We also find evidence of a substructure in [Formula: see text] versus [Formula: see text] in the thick disk population mostly that would give support to the accretion scenario for the formation of the thick disk.


2003 ◽  
Vol 21 (6) ◽  
pp. 1217-1228 ◽  
Author(s):  
R. B. McKibben ◽  
J. J. Connell ◽  
C. Lopate ◽  
M. Zhang ◽  
J. D. Anglin ◽  
...  

Abstract. In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum.  Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs) accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs). At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere.Key words. Interplanetary physics (cosmic rays) – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections)


2017 ◽  
Vol 12 (S330) ◽  
pp. 263-264
Author(s):  
Alessandro Spagna ◽  
Anna Curir ◽  
Marco Giammaria ◽  
Mario G. Lattanzi ◽  
Giuseppe Murante ◽  
...  

AbstractWe have investigated the chemo-dynamical evolution of a Milky Way-like disk galaxy, AqC4, produced by a cosmological simulation integrating a sub-resolution ISM model. We evidence a global inside-out and upside-down disk evolution, that is consistent with a scenario where the “thin disk” stars are formed from the accreted gas close to the galactic plane, while the older “thick disk” stars are originated in situ at higher heights. Also, the bar appears the most effective heating mechanism in the inner disk. Finally, no significant metallicity-rotation correlation has been observed, in spite of the presence of a negative [Fe/H] radial gradient.


1985 ◽  
Vol 106 ◽  
pp. 305-308
Author(s):  
T. Jaakkola ◽  
N. Holsti ◽  
P. Teerikorpi

In maps of the galactic structure based on the kinematical method (Fig. 1) several systematically heliocentric anomalies are found: 1. Assuming purely circular motion, the spiral arms are more tightly wound and the extent of neutral hydrogen is smaller in the northern galactic hemisphere than in the southern one. 2. With separate rotation curves for the north and the south, the arms become anomalously circular. 3. Consequently, there is a striking discrepancy with the stellar spiral structure. 4. There are long straight portions in the arms pointing towards the Sun. 5. There are abrupt knee-like features in the south. 6. Some arms seem to affect the structure of other, outer arms. 7. Conspicuously strong curvature of the arms is found in the north. 8. The HI-density is enhanced at symmetric longitudes on the far side. 9. With the northern rotation model HII-regions and HI avoid the southern tangential circle. 10. The Perseus Arm is displaced at 1 = 180°.


1995 ◽  
Vol 166 ◽  
pp. 368-368
Author(s):  
Devendra Ojha ◽  
Olivier Bienaymé

We have been doing a sample survey in UBV photometry and proper motions as part of an investigation of galactic structure and evolution. The 3 fields in the direction of galactic anticentre (l = 167°, b = 47°), centre (l = 3°, b = 47°) and antirotation (l = 278°, b = 47°) have been surveyed. The high astrometric quality of the MAMA machine (CAI, Paris) gives access to micronic accuracy (leading to < 2 mas per year) on proper motions with a 35 years time base. The kinematical distribution of F and G–type stars have been probed to distances up to 2.5 kpc above the galactic plane. We have derived the constrain on the structural parameters of the thin and thick disk components of the Galaxy (Ojha et al. 1994abc): • The scale lengths of the thin and thick disks are found to be 2.6±0.1 and 3.3±0.5 kpc, respectively. The density laws for stars with 3.5≤MV≤5 as a function of distance above the plane follow a single exponential with scale height of ∼ 260 pc (thin disk) and a second exponential with scale height of ∼ 800 pc (thick disk) with a local normalization of 5–6% of the disk.• The thin disk population was found with (〈 U+W〉, 〈V〉) = (1±4, −14±2) km/s and velocity dispersions (σU+W, σV) = (35±2, 30±1) km/s. The thick disk population was found to have a rotational velocity of Vrot = 177 km/s and velocity dispersions (σU, σV, σW) = (67,51,42) km/s. No dependence with r and z distances was found in the asymmetric drift measurements of the thick disk population.


1996 ◽  
Vol 169 ◽  
pp. 427-428
Author(s):  
Roland Buser ◽  
Jianxiang Rong

The metallicity-sensitive (U – G) colors from the new homogeneous catalog of photographic RGU data in seven high-latitude fields have been used to determine the larger-scale metallicity distributions of the Galactic population components. For the thick disk, preliminary analysis based on our best structural models provides a mean metallicity 〈[M/H]〉 = −0.6 ± 0.3dex and a marginal vertical metallicity gradient ≈ −0.1dex/kpc. The observed color distributions are further consistent with the (old) thin disk having mean abundance 〈[M/H]〉 = −0.3 ± 0.2dex and abundance gradient ∂[M/H]/∂z = −0.6dex/kpc.


2004 ◽  
Vol 21 (4) ◽  
pp. 371-374
Author(s):  
Geraint F. Lewis ◽  
Rodrigo A. Ibata ◽  
Michael J. Irwin ◽  
Nicolas F. Martin ◽  
Michele Bellazzini ◽  
...  

AbstractRecent observational evidence suggests that the Sagittarius dwarf galaxy represents the only major ongoing accretion event in the Galactic halo, accounting for the majority of stellar debris identified there. This paper summarises the recent discovery of another potential Milky Way accretion event, the Canis Major dwarf galaxy. This dwarf satellite galaxy is found to lie just below the Galactic plane and appears to be on an equatorial orbit. Unlike Sagittarius, which is contributing to the Galactic halo, the location and eventual demise of Canis Major suggests that it represents a building block of the thick disk.


Author(s):  
Francesca Matteucci

AbstractIn this review, I will discuss the comparison between model results and observational data for the Milky Way, the predictive power of such models as well as their limits. Such a comparison, known as Galactic archaeology, allows us to impose constraints on stellar nucleosynthesis and timescales of formation of the various Galactic components (halo, bulge, thick disk and thin disk).


2016 ◽  
Vol 11 (S321) ◽  
pp. 3-5
Author(s):  
Thomas Bensby

AbstractBased on observational data from the fourth internal data release of the Gaia-ESO Survey we probe the abundance structure in the Milky Way stellar disk as a function of galactocentric radius and height above the plane. We find that the inner and outer Galactic disks have different chemical signatures. The stars in the inner Galactic disk show abundance signatures of both the thin and thick disks, while the stars in the outer Galactic disk resemble in majority the abundances seen in the thin disk. Assuming that the Galactic thick disk can be associated with the α-enriched population, this can be interpreted as that the thick disk density drops drastically beyond a galactocentric radius of about 10 kpc. This is in agreement with recent findings that the thick disk has a short scale-length, shorter than that of the the thin disk.


2017 ◽  
Vol 13 (S334) ◽  
pp. 132-135
Author(s):  
Daisuke Kawata

AbstractUsing N-body simulations of the Galactic disks, we qualitatively study how the metallicity distributions of the thick and thin disk stars are modified by radial mixing induced by the bar and spiral arms. We show that radial mixing drives a positive vertical metallicity gradient in the mono-age disk population whose initial scale-height is constant and initial radial metallicity gradient is tight and negative. On the other hand, if the initial disk is flaring, with scale-height increasing with galactocentric radius, radial mixing leads to a negative vertical metallicity gradient, which is consistent with the current observed trend. We also discuss impacts of radial mixing on the metallicity distribution of the thick disk stars. By matching the metallicity distribution of N-body models to the SDSS/APOGEE data, we argue that the progenitor of the Milky Way’s thick disk should not have a steep negative metallicity gradient.


Sign in / Sign up

Export Citation Format

Share Document