scholarly journals Wolf-Rayet stars from Very Massive Stars

2014 ◽  
Vol 9 (S307) ◽  
pp. 152-153
Author(s):  
Norhasliza Yusof

AbstractMany studies focused on very massive stars (VMS) within the framework of Pop. III stars, because this is where they were thought to be abundant. In this work, we focus on the evolution of VMS in the local universe following the discovery of VMS in the R136 cluster in the Large Magellanic Cloud (LMC). We computed grids of VMS evolutionary tracks in the range 120–500 M⊙ with solar, LMC and Small Magellanic Cloud metallicities. All models end their lives as Wolf-Rayet (WR) stars of the WC (or WO) type. We discuss the evolution and fate of VMS around solar metallicity with particular focus on the WR phase. For example, we show that a distinctive feature that may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses is the enhanced abundances of Ne and Mg at the surface of WC stars.

1991 ◽  
Vol 148 ◽  
pp. 438-439
Author(s):  
Tatiana A. Lozinskaya

The four oxygen-sequence WR stars, Sand 1 in the Small Magellanic Cloud (SMC), Sand 2 in the Large Magellanic Cloud (LMC), and WR 102 and WR 142 in the Galaxy represent the latest stage of the evolution of massive stars (Sanduleak 1971, Barlow and Hummer 1982, Moffatet al.1985). We have shown WR 102 to be a stripped CO core of a supermassive star (Dopitaet al.1990), probably seen only several thousand years before a SN explosion. The four stars are characterized by extremely energetic stellar winds –Vw from 4500 to 7400 km/s (Barlow and Hummer 1982, Dopitaet al.1990, Torreset al.1986). Examination of the environments of WO stars leads to the conclusion that the four objects appear to be associated with optical and/or IR shell-like structures, although the short WO-superwind does not prevail in the shell's formation.


1991 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
B. E. Westerlund

A vast amount of observational data concerning the structure and kinematics of the Magellanic Clouds is now available. Many basic quantities (e.g. distances and geometry) are, however, not yet sufficiently well determined. Interactions between the Small Magellanic Cloud (SMC), the Large Magellanic Cloud (LMC) and our Galaxy have dominated the evolution of the Clouds, causing bursts of star formation which, together with stochastic self-propagating star formation, produced the observed structures. In the youngest generation in the LMC it is seen as an intricate pattern imitating a fragmented spiral structure. In the SMC much of the fragmentation is along the line of sight complicating the reconstruction of its history. The violent events in the past are also recognizable in complex velocity patterns which make the analysis of the kinematics of the Clouds difficult.


2009 ◽  
Vol 5 (S266) ◽  
pp. 35-40 ◽  
Author(s):  
C. J. Evans ◽  
N. Bastian ◽  
Y. Beletsky ◽  
I. Brott ◽  
M. Cantiello ◽  
...  

AbstractThe Tarantula Survey is an ambitious ESO Large Programme that has obtained multi-epoch spectroscopy of over 1000 massive stars in the 30 Doradus region in the Large Magellanic Cloud. Here, we introduce the scientific motivations of the survey and give an overview of the observational sample. Ultimately, quantitative analysis of every star, paying particular attention to the effects of rotational mixing and binarity, will be used to address fundamental questions in both stellar and cluster evolution.


1998 ◽  
Vol 15 (1) ◽  
pp. 128-131 ◽  
Author(s):  
Miroslav D. Filipović ◽  
Paul A. Jones ◽  
Graeme L. White ◽  
Raymond F. Haynes

AbstractWe present a comparison between the latest Parkes radio surveys (Filipović et al. 1995, 1996, 1997) and Hα surveys of the Magellanic Clouds (Kennicutt & Hodge 1986). We have found 180 discrete sources in common for the Large Magellanic Cloud (LMC) and 40 in the field of the Small Magellanic Cloud (SMC). Most of these sources (95%) are HII regions and supernova remnants (SNRs). A comparison of the radio and Hα flux densities shows a very good correlation and we note that many of the Magellanic Clouds SNRs are embedded in HII regions.


1991 ◽  
Vol 148 ◽  
pp. 401-406 ◽  
Author(s):  
Klaas S. De Boer

General aspects of ISM studies using absorption line studies are given and available data are reviewed. Topics are: galactic foreground gas, individual fields in the Magellanic Clouds (MCs) and MC coronae. Overall investigations are discussed. It is demonstrated that the metals in the gas of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are a factor of 3 and 10, respectively, in abundance below solar levels. The depletion pattern in the LMC is similar to that of the Milky Way.


2010 ◽  
Vol 140 (2) ◽  
pp. 416-429 ◽  
Author(s):  
A. Z. Bonanos ◽  
D. J. Lennon ◽  
F. Köhlinger ◽  
J. Th. van Loon ◽  
D. L. Massa ◽  
...  

2018 ◽  
Vol 14 (S344) ◽  
pp. 118-121
Author(s):  
Rhorom Priyatikanto ◽  
Mochamad Ikbal Arifyanto ◽  
Rendy Darma ◽  
Aprilia ◽  
Muhamad Irfan Hakim

AbstractGlobal history of star or cluster formation in the Large Magellanic Cloud (LMC) has been the center of interest in several studies as it is thought to be influenced by tidal interaction with the Small Magellanic Cloud and even the Milky Way. This study focus on the formation history of the LMC in relation with the context of binary star clusters population, the apparent binary fraction (e.g., percentage of cluster pairs) in different epoch were calculated and analyzed. From the established distributions, it can be deduced that the binary clusters tend to be young (∽ 100 Myr) while their locations coincide with the locations of star forming complexes. There is an indication that the binary fraction increases as the rise of star formation rate in the last millions years. In the LMC, the increase of binary fraction at age ∽ 100 Myr can be associated to the last episode of close encounter with the Small Magellanic Cloud at ∽ 150 Myr ago. This observational evidence supports the theory of binary cluster formation through the fission of molecular cloud where the encounter between galaxies enhanced the clouds velocity dispersion which in turn increased the probability of cloud-cloud collisions that produce binary clusters.


2019 ◽  
Vol 627 ◽  
pp. A151 ◽  
Author(s):  
T. Shenar ◽  
D. P. Sablowski ◽  
R. Hainich ◽  
H. Todt ◽  
A. F. J. Moffat ◽  
...  

Context. Massive Wolf–Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z ≈ 0.5 Z⊙), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf–Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45  ±  30% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only ≈12  ±  7% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises ≈4% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L ≈ 5.2 [L⊙], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (veq ≲ 250 km s−1) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.


1991 ◽  
Vol 148 ◽  
pp. 161-164 ◽  
Author(s):  
S. van den Bergh

Star clusters in the Magellanic Clouds (MCs) differ from those in the Galaxy in a number of respects: (1) the Clouds contain a class of populous open clusters that has no Galactic counterpart; (2) Cloud clusters have systematically larger radii rh than those in the Galaxy; (3) clusters of all ages in the Clouds are, on average, more flattened than those in the Galaxy. In the Large Magellanic Cloud (LMC) there appear to have been two distinct epochs of cluster formation. LMC globulars have ages of 12-15 Gyr, whereas most populous open clusters have ages <5 Gyr. No such dichotomy is observed for clusters in the Small Magellanic Cloud (SMC) The fact that the SMC exhibits no enhanced cluster formation at times of bursts of cluster formation in the LMC, militates against encounters between the Clouds as a cause for enhanced rates of star and cluster formation.


Sign in / Sign up

Export Citation Format

Share Document