scholarly journals First Results from the Disk Eclipse Search with KELT (DESK) Survey

2015 ◽  
Vol 10 (S314) ◽  
pp. 167-170 ◽  
Author(s):  
Joseph E. Rodriguez ◽  
Joshua Pepper ◽  
Keivan G. Stassun

AbstractUsing time-series photometry from the Kilodegree Extremely Little Telescope (KELT) exoplanet survey, we are looking for eclipses of stars by their protoplanetary disks, specifically in young stellar associations. To date, we have discovered two previously unknown, large dimming events around the young stars RW Aurigae and V409 Tau. We attribute the dimming of RW Aurigae to an occultation by its tidally disrupted disk, with the disruption perhaps resulting from a recent flyby of its binary companion. Even with the dynamical environment of RW Aurigae, the distorted disk material remains very compact and presumably capable of forming planets. This system also shows that strong binary interactions with disks can also influence planet and core composition by stirring up and mixing materials during planet formation. We interpret the dimming of V409 Tau to be due to a feature, possibly a warp or perturbation, lying at least 10 AU from the host star in its nearly edge-on circumstellar disk.

2009 ◽  
Vol 5 (H15) ◽  
pp. 727-728
Author(s):  
Jane Gregorio-Hetem ◽  
Silvia Alencar

In recent years our knowledge of star, brown dwarf and planet formation has progressed immensely due to new data in the IR domain (Spitzer telescope), new X-ray campaigns such as the Chandra Orion Ultradeep Project (COUP) and the X-ray Emission Survey of Taurus (XEST), with XMM-Newton, as well as adaptive optics results and synoptic studies of young stellar and substellar objects.


2020 ◽  
Vol 637 ◽  
pp. A5 ◽  
Author(s):  
Vardan G. Elbakyan ◽  
Anders Johansen ◽  
Michiel Lambrechts ◽  
Vitaly Akimkin ◽  
Eduard I. Vorobyov

Aims. We study the dynamics and growth of dust particles in circumstellar disks of different masses that are prone to gravitational instability during the critical first Myr of their evolution. Methods. We solved the hydrodynamics equations for a self-gravitating and viscous circumstellar disk in a thin-disk limit using the FEOSAD numerical hydrodynamics code. The dust component is made up of two different components: micron-sized dust and grown dust of evolving size. For the dust component, we considered the dust coagulation, fragmentation, momentum exchange with the gas, and dust self-gravity. Results. We found that the micron-sized dust particles grow rapidly in the circumstellar disk, reaching a few cm in size in the inner 100 au of the disk during less than 100 kyr after the disk formation, provided that fragmentation velocity is 30 ms−1. Due to the accretion of micron dust particles from the surrounding envelope, which serves as a micron dust reservoir, the approximately cm-sized dust particles continue to be present in the disk for more than 900 kyr after the disk formation and maintain a dust-to-gas ratio close to 0.01. We show that a strong correlation exists between the gas and pebble fluxes in the disk. We find that radial surface density distribution of pebbles in the disk shows power-law distribution with an index similar to that of the Minimum-mass solar nebula regardless the disk mass. We also show that the gas surface density in our models agrees well with measurements of dust in protoplanetary disks of AS 209, HD 163296, and DoAr 25 systems. Conclusions. Pebbles are formed during the very early stages of protoplanetary disk evolution. They play a crucial role in the planet formation process. Our disc simulations reveal the early onset (<105 yr) of an inwards-drifting flux of pebble-sized particles that makes up approximately between one hundredth and one tenth of the gas mass flux, which appears consistent with mm-observations of discs. Such a pebble flux would allow for the formation of planetesimals by streaming instability and the early growth of embryos by pebble accretion. We conclude that unlike the more common studies of isolated steady-state protoplanetary disks, more sophisticated global numerical simulations of circumstellar disk formation and evolution, including the pebble formation from the micron dust particles, are needed for performing realistic planet formation studies.


2017 ◽  
Vol 608 ◽  
pp. L9 ◽  
Author(s):  
A.-M. Lagrange ◽  
M. Keppler ◽  
H. Beust ◽  
L. Rodet ◽  
N. Meunier ◽  
...  

Context. The giant exoplanets imaged on wide orbits (≥10 au) around young stars challenge the classical theories of planet formation. The presence of perturbing bodies could have played a role in the dynamical evolution of the planets once formed. Aims. We aim to search for close companions to HD 131399, a star around which a giant planet has been discovered, at a projected separation of about 80 au. The star also appears to be a member of a wide (320 au) binary system. Methods. We recorded HARPS high resolution spectra in January 2017. Results. We find that HD 131399A is probably seen close to pole-on. We discover a low mass star companion that orbits with a period of about 10 days on a misaligned orbit. Even though the companion does not have an impact on the current dynamical evolution of the planet, it could have played a role in its setting and in clearing the circumstellar disk from which the planet may originate.


2020 ◽  
Vol 51 (1) ◽  
pp. 29-32
Author(s):  
Dmitry A. Semenov ◽  
Richard D. Teague

Protoplanetary disks around young stars are the birth sites of planetary systems like our own. Disks represent the gaseous dusty matter left after the formation of their central stars. The mass and luminosity of the star, initial disk mass and angular momentum, and gas viscosity govern disk evolution and accretion. Protoplanetary disks are the cosmic nurseries where microscopic dust grains grow into pebbles, planetesimals, and planets.


2018 ◽  
Vol 14 (S345) ◽  
pp. 106-110
Author(s):  
Per Bjerkeli ◽  
Daniel Harsono ◽  
Matthijs H. D. van der Wiel ◽  
Jon P. Ramsey ◽  
Lars E. Kristensen ◽  
...  

AbstractDisks around young stars are the sites of planet formation. As such, the physical and chemical structure of disks have a direct impact on the formation of planetary bodies. Outflowing winds remove angular momentum and mass and affect the disk structure and therefore potentially planet formation. Until very recently, we have lacked the facilities to provide the necessary observational tools to peer into the wind launching and planet forming regions of the young disks. Within the framework of the Resolving star formation with ALMA program, young protostellar systems are targeted with ALMA to resolve the disk formation, outflow launching and planet formation. This contribution presents the first results of the program. The first resolved images of outflow launching from a disk were recently reported towards the Class I source TMC1A (Bjerkeli et al. 2016) where we also present early evidence of grain growth (Harsono et al. 2018).


2016 ◽  
Vol 11 (S321) ◽  
pp. 22-24
Author(s):  
Sakurako Okamoto ◽  
Nobuo Arimoto ◽  
Annette M.N. Ferguson ◽  
Edouard J. Bernard ◽  
Mike J. Irwin ◽  
...  

AbstractWe present the results from the state-of-the-art wide-field survey of the M81 galaxy group that we are conducting with Hyper Suprime-Cam on Subaru Telescope. Our photometry reaches about 2 mag below the tip of the red giant branch (RGB) and reveals the spatial distribution of both old and young stars over an area of 5°2around the M81. The young main-sequence (MS) stars closely follow the HI distribution and can be found in a stellar stream between M81 and NGC 3077 and in numerous outlying stellar associations. Our survey also reveals for the first time the very extended (>2 × R25) halos of RGB stars around M81, M82, and NGC 3077, as well as faint tidal streams that link these systems. The gravitational interactions between M81, M82 and NGC 3077 galaxies induced star formation in tidally stripped gas, and also significantly perturbed the older stellar components leading to disturbed halo morphologies.


2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Werner Schmutz ◽  
Margit Haberreiter ◽  
Rok Sikonja

&lt;p&gt;&lt;span&gt;Since the late 70&amp;#8217;s, successive satellite missions have been monitoring the sun&amp;#8217;s activity, recording total solar irradiance observations. These measurements are important to estimate the Earth&amp;#8217;s energy imbalance, &lt;/span&gt;&lt;span&gt;i.e. the difference of energy absorbed and emitted by our planet. Climate modelers need the solar forcing time series in their models in order to study the influence of the Sun on the Earth&amp;#8217;s climate. With this amount of TSI data, solar irradiance reconstruction models &amp;#160;can be better validated which can also improve studies looking at past climate reconstructions (e.g., Maunder minimum). V&lt;/span&gt;&lt;span&gt;arious algorithms have been proposed in the last decade to merge the various TSI measurements over the 40 years of recording period. We have developed a new statistical algorithm based on data fusion.&amp;#160;&amp;#160;The stochastic noise processes of the measurements are modeled via a dual kernel including white and coloured noise.&amp;#160;&amp;#160;We show our first results and compare it with previous releases (PMOD,ACRIM, ... ).&amp;#160;&lt;/span&gt;&lt;/p&gt;


2013 ◽  
Vol 8 (S299) ◽  
pp. 90-93
Author(s):  
Nienke van der Marel ◽  
Ewine F. van Dishoeck ◽  
Simon Bruderer ◽  
Til Birnstiel ◽  
Paola Pinilla ◽  
...  

AbstractPlanet formation and clearing of protoplanetary disks is one of the long standing problems in disk evolution theory. The best test of clearing scenarios is observing systems that are most likely to be actively forming planets: the transitional disks with large inner dust cavities. We present the first results of our ALMA (Atacama Large Millimeter/submillimeter Array) Cycle 0 program using Band 9, imaging the Herbig Ae star Oph IRS 48 in CO 6−5 and the submillimeter continuum in the extended configuration. The resulting ~0.2″ spatial resolution completely resolves the cavity of this disk in the gas and the dust. The gas cavity of IRS 48 is half as large as the dust cavity, ruling out grain growth and photoevaporation as the primary cause of the truncation. On the other hand, the continuum emission reveals an unexpected large azimuthal asymmetry and steep edges in the dust distribution along the ring, suggestive of dust trapping. We will discuss the implications of the combined gas and dust distribution for planet formation at a very early stage. This is one of the first transition disks with spatially resolved gas inside the cavity, demonstrating the superb capabilities of the Band 9 receivers.


2000 ◽  
Vol 176 ◽  
pp. 469-470
Author(s):  
T. Arentoft ◽  
G. Handle ◽  
R. R. Shobbrook ◽  
M. A. Wood ◽  
L. Crause ◽  
...  

AbstractWe present the first results from multi-site observations of the δ Scuti star XX Pyx (CD–24°7599). The observations were carried out as the 17th run of the Delta Scuti Network. We collected 583 hr of B, V time-series photometry, resulting in a detection level (4σ) in the amplitude spectrum of 0.5 mmag. We detect 6 new pulsation frequencies, bringing the total number of frequencies known in this star up 19.


Sign in / Sign up

Export Citation Format

Share Document