scholarly journals Globular Clusters in the Local Group

2014 ◽  
Vol 10 (S312) ◽  
pp. 157-170 ◽  
Author(s):  
Eva K. Grebel

AbstractOnly twelve of the > 76 Local Group galaxies contain globular clusters, showing a broad range of specific frequencies. Here we summarize the properties of these globular cluster systems. Many host galaxies contain very old globulars, but in some globular cluster formation may have been delayed. An age range of several Gyr is common. Except for the inner regions of the spirals, old globular clusters tend to be metal-poor. Increasingly, light element variations and hints of multiple stellar populations are being found also in extragalactic globulars. There is ample evidence for globular cluster accretion from dwarfs onto massive galaxies, but its magnitude has yet to be quantified. Caution is needed to avoid overinterpreting indirect evidence.

2009 ◽  
Vol 5 (S266) ◽  
pp. 250-257
Author(s):  
Oleg Y. Gnedin

AbstractGlobular cluster systems in most large galaxies display bimodal color and metallicity distributions, which are frequently interpreted as indicating two distinct modes of cluster formation. The metal-rich (red) and metal-poor (blue) clusters have systematically different locations and kinematics in their host galaxies. However, the red and blue clusters have similar internal properties, such as their masses, sizes, and ages. It is therefore interesting to explore whether both metal-rich and metal-poor clusters could form by a common mechanism and still be consistent with the bimodal distribution. We show that if all globular clusters form only during mergers of massive, gas-rich protogalactic disks, their metallicity distribution could be statistically consistent with that of the Galactic globulars. We take the galaxy assembly history from cosmological dark-matter simulations and couple it with the observed scaling relations for the amount of cold gas available for star formation. In the best-fitting model, early mergers of smaller hosts create exclusively blue clusters, while subsequent mergers of progenitor galaxies with a range of masses create both red and blue clusters. Thus, bimodality arises naturally as the result of a small number of late, massive merger events. We calculate cluster mass loss, including the effects of two-body scattering and stellar evolution, and find that more blue than red clusters are disrupted by the present time because of their lower initial masses and older ages. The present-day mass function in the best-fitting model is consistent with the Galactic distribution. However, the spatial distribution of model clusters is much more extended than observed and is independent of the parameters of our model.


2020 ◽  
Vol 500 (4) ◽  
pp. 4768-4778
Author(s):  
Danny Horta ◽  
Meghan E Hughes ◽  
Joel L Pfeffer ◽  
Nate Bastian ◽  
J M Diederik Kruijssen ◽  
...  

ABSTRACT We set out to compare the age–metallicity relation (AMR) of massive clusters from Magellanic Cloud mass galaxies in the E-MOSAICS suite of numerical cosmological simulations with an amalgamation of observational data of massive clusters in the Large and Small Magellanic Clouds (LMC/SMC). We aim to test if: (i) star cluster formation proceeds according to universal physical processes, suggestive of a common formation mechanism for young-massive clusters (YMCs), intermediate-age clusters (IACs), and ancient globular clusters (GCs); (ii) massive clusters of all ages trace a continuous AMR; and (iii) the AMRs of smaller mass galaxies show a shallower relation when compared to more massive galaxies. Our results show that, within the uncertainties, the predicted AMRs of L/SMC-mass galaxies with similar star formation histories to the L/SMC follow the same relation as observations. We also find that the metallicity at which the AMR saturates increases with galaxy mass, which is also found for the field star AMRs. This suggests that relatively low-metallicity clusters can still form in dwarfs galaxies. Given our results, we suggest that ancient GCs share their formation mechanism with IACs and YMCs, in which GCs are the result of a universal process of star cluster formation during the early episodes of star formation in their host galaxies.


2019 ◽  
Vol 14 (S351) ◽  
pp. 305-308
Author(s):  
Christian I. Johnson

AbstractNGC 6402 is one of the most massive globular clusters in the Galaxy but until recently little was known about its detailed chemical composition. Interestingly, recent results have shown that NGC 6402 exhibits a paucity of intermediate composition stars that may be indicative of an early termination of star formation. As a result, NGC 6402 may be important for understanding cluster formation and the order in which various stellar populations are born.


2019 ◽  
Vol 14 (S351) ◽  
pp. 155-160
Author(s):  
Charli M. Sakari

AbstractIntegrated light (IL) spectroscopy enables studies of stellar populations beyond the Milky Way and its nearest satellites. In this paper, I will review how IL spectroscopy reveals essential information about globular clusters and the assembly histories of their host galaxies, concentrating particularly on the metallicities and detailed chemical abundances of the GCs in M31. I will also briefly mention the effects of multiple populations on IL spectra, and how observations of distant globular clusters help constrain the source(s) of light-element abundance variations. I will end with future perspectives, emphasizing how IL spectroscopy can bridge the gap between Galactic and extragalactic astronomy.


1983 ◽  
Vol 100 ◽  
pp. 359-364
Author(s):  
K. C. Freeman

In the Milky Way, the globular clusters are all very old, and we are accustomed to think of them as the oldest objects in the Galaxy. The clusters cover a wide range of chemical abundance, from near solar down to about [Fe/H] ⋍ −2.3. However there are field stars with abundances significantly lower than −2.3 (eg Bond, 1980); this implies that the clusters formed during the active phase of chemical enrichment, with cluster formation beginning at a time when the enrichment processes were already well under way.


2002 ◽  
Vol 207 ◽  
pp. 94-104
Author(s):  
Eva K. Grebel

I summarize our knowledge of star clusters and associations in irregular galaxies other than the Magellanic Clouds in the Local Group. Surveys affording complete area coverage at high angular resolution are still lacking. Confirmed globular clusters are known only in NGC 6822 and WLM. Very few dIrrs contain populous or sparse open clusters. There is a pronounced deficiency of intermediate-age and young clusters. Apart from parent galaxy mass, the lack of interactions may be a key reason for the lack of cluster formation in the dIrrs. All dIrrs have one or several short-lived OB associations in the star-forming regions in their centers.


2019 ◽  
Vol 492 (1) ◽  
pp. 966-977 ◽  
Author(s):  
S Kamann ◽  
E Dalessandro ◽  
N Bastian ◽  
J Brinchmann ◽  
M den Brok ◽  
...  

ABSTRACT We combine MUSE spectroscopy and Hubble Space Telescope ultraviolet (UV) photometry to perform a study of the chemistry and dynamics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Previous studies have revealed three stellar populations that vary not only in their light-element abundances, but also in their radial distributions, with the concentration decreasing with increasing nitrogen enrichment. This remarkable trend, which sets M80 apart from other Galactic globular clusters, points towards a complex formation and evolutionary history. To better understand how M80 formed and evolved, revealing its internal kinematics is key. We find that the most N-enriched population rotates faster than the other two populations at a 2σ confidence level. While our data further suggest that the intermediate population shows the least amount of rotation, this trend is rather marginal (1−2σ). Using axisymmetric Jeans models, we show that these findings can be explained from the radial distributions of the populations if they possess different angular momenta. Our findings suggest that the populations formed with primordial kinematical differences.


2002 ◽  
Vol 207 ◽  
pp. 421-427 ◽  
Author(s):  
Søren S. Larsen

Populations of young star clusters show significant differences even among “normal” disk galaxies. In this contribution I discuss how properties of young cluster systems are related to those of their host galaxies, based on a recent study of clusters in a sample of 22 nearby spiral galaxies. Luminous young clusters similar to the “super” star clusters observed in starbursts and mergers exist in several of these galaxies, and it is found that the luminosity of the brightest star cluster as well as the specific luminosity of the cluster systems both correlate well with the host galaxy star formation rate. When considering star clusters in different environments the traditional distinction between “open”, “massive” and “globular” clusters breaks down, underscoring the need for a universal physical description of cluster formation.


2005 ◽  
Vol 13 ◽  
pp. 347-349
Author(s):  
Stephen E. Zepf

AbstractThis paper addresses the questions of what we have learned about how and when dense star clusters form, and what studies of star clusters have revealed about galaxy formation and evolution. One important observation is that globular clusters are observed to form in galaxy mergers and starbursts in the local universe, which both provides constraints on models of globular cluster formation, and suggests that similar physical conditions existed when most early-type galaxies and their globular clusters formed in the past. A second important observation is that globular cluster systems typically have bimodal color distributions. This was predicted by merger models, and indicates an episodic formation history for elliptical galaxies. A third and very recent result is the discovery of large populations of intermediate age globular clusters in several elliptical galaxies through the use of optical to near-infrared colors. These provide an important link between young cluster systems observed in starbursts and mergers and old cluster systems. This continuum of ages of the metal-rich globular cluster systems also indicates that there is no special age or epoch for the formation of the metal-rich globular clusters, which comprise about half of the cluster population. The paper concludes with a brief discussion of recent results on the globular cluster – low-mass X-ray binary connection.


2010 ◽  
Vol 6 (S270) ◽  
pp. 381-384
Author(s):  
Oleg Y. Gnedin

AbstractModern hydrodynamic simulations of galaxy formation are able to predict accurately the rates and locations of the assembly of giant molecular clouds in early galaxies. These clouds could host star clusters with the masses and sizes of real globular clusters. I describe current state-of-the-art simulations aimed at understanding the origin of the cluster mass function and metallicity distribution. Metallicity bimodality of globular cluster systems appears to be a natural outcome of hierarchical formation and gradually declining fraction of cold gas in galaxies. Globular cluster formation was most prominent at redshifts z > 3, when massive star clusters may have contributed as much as 20% of all galactic star formation.


Sign in / Sign up

Export Citation Format

Share Document