scholarly journals Searching for planetary nebulae at the Galactic halo via J-PAS

2015 ◽  
Vol 11 (S317) ◽  
pp. 304-305
Author(s):  
Denise R. Gonçalves ◽  
T. Aparício-Villegas ◽  
S. Akras ◽  
A. Cortesi ◽  
M. Borges-Fernandes ◽  
...  

AbstractThe Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow-band imaging, very wide field cosmological survey. It will last 5 years and will observe 8500 sq. deg. of the sky. There will be 54 contiguous narrow-band filters of 145Å FWHM, from 3,500 to 10,000Å. Two broad-band filters will be added at the extremes, UV and IR, plus the 3–g, r, and i– SDSS filters. Thus, J-PAS can be an important tool to search for new planetary nebulae (PNe) at the halo, increasing their numbers, because only 14 of them have been convincingly identified in the literature. Halo PNe are able to reveal precious information for the study of stellar evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense emission lines of PNe make them good objects to be searched by J-PAS. Though covering a significantly smaller sky area, data from the ALHAMBRA survey were used to test our J-PAS strategy to search for PNe. Our first results are shown in this contribution.

2021 ◽  
Vol 503 (3) ◽  
pp. 4118-4135
Author(s):  
John Y H Soo ◽  
Benjamin Joachimi ◽  
Martin Eriksen ◽  
Małgorzata Siudek ◽  
Alex Alarcon ◽  
...  

ABSTRACT We study the performance of the hybrid template machine learning photometric redshift (photo-z) algorithm delight, which uses Gaussian processes, on a subset of the early data release of the Physics of the Accelerating Universe Survey (PAUS). We calibrate the fluxes of the 40 PAUS narrow bands with six broad-band fluxes (uBVriz) in the Cosmic Evolution Survey (COSMOS) field using three different methods, including a new method that utilizes the correlation between the apparent size and overall flux of the galaxy. We use a rich set of empirically derived galaxy spectral templates as guides to train the Gaussian process, and we show that our results are competitive with other standard photometric redshift algorithms. delight achieves a photo-z 68th percentile error of σ68 = 0.0081(1 + z) without any quality cut for galaxies with iauto < 22.5 as compared to 0.0089(1 + z) and 0.0202(1 + z) for the bpz and annz2 codes, respectively. delight is also shown to produce more accurate probability distribution functions for individual redshift estimates than bpz and annz2. Common photo-z outliers of delight and bcnz2 (previously applied to PAUS) are found to be primarily caused by outliers in the narrow-band fluxes, with a small number of cases potentially indicating spectroscopic redshift failures in the reference sample. In the process, we introduce performance metrics derived from the results of bcnz2 and delight, allowing us to achieve a photo-z quality of σ68 < 0.0035(1 + z) at a magnitude of iauto < 22.5 while keeping 50 per cent objects of the galaxy sample.


2011 ◽  
Vol 7 (S283) ◽  
pp. 308-309 ◽  
Author(s):  
Luciana Bianchi ◽  
Arturo Manchado ◽  
Karl Forster

AbstractGALEX (the Galaxy Evolution Explorer) has provided far-UV(1344-1786Å) and near-UV(1771-2831Å) imaging of several Planetary Nebulae (e.g., Bianchi et al. 2008, Bianchi 2012), with flux limits ~27.5 mag/sq.arcsec for objects in the Medium-deph Imaging Survey (MIS). PNe images in the GALEX broad-band UV filters include flux from both nebular line and continuum emission. We use the GALEX grism observing mode to obtain slitless spectral imaging of a sample of PNe with diameters >1′, in the near-UV. We show the first data from this program. The grism produces 2D images of the prominent UV nebular emission lines, when such lines dominate the flux. Combined with monochromatic images of diagnostic lines in the optical domain, such data help detect and interpret ionization and shock fronts, especially in faint nebular regions.


2011 ◽  
Vol 7 (S284) ◽  
pp. 482-488
Author(s):  
Asantha Cooray ◽  
Jamie Bock ◽  
Mitsunobu Kawada ◽  
Brian Keating ◽  
Andrew Lange ◽  
...  

AbstractThe Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown in February 2009 and July 2010 and four more flights are planned by 2014, including an upgrade (CIBER-II). We propose, after several additional flights of CIBER-I, an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times larger than existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.


2015 ◽  
Vol 11 (S317) ◽  
pp. 116-119
Author(s):  
Pawel Pietrukowicz ◽  

AbstractRR Lyrae stars being distance indicators and tracers of old population serve as excellent probes of the structure, formation, and evolution of our Galaxy. Thousands of them are being discovered in ongoing wide-field surveys. The OGLE project conducts the Galaxy Variability Survey with the aim to detect and analyze variable stars, in particular of RRab type, toward the Galactic bulge and disk, covering a total area of 3000 deg2. Observations in these directions also allow detecting background halo variables and unique studies of their properties and distribution at distances from the Galactic Center to even 40 kpc. In this contribution, we present the first results on the spatial distribution of the observed RRab stars, their metallicity distribution, the presence of multiple populations, and relations with the old bulge. We also show the most recent results from the analysis of RR Lyrae stars of the Sgr dwarf spheroidal galaxy, including its center, the globular cluster M54.


2014 ◽  
Vol 10 (S309) ◽  
pp. 287-288
Author(s):  
Minju Lee ◽  
Kenta Suzuki ◽  
Kotaro Kohno ◽  
Yoichi Tamura ◽  
Daisuke Iono ◽  
...  

AbstractWe present recent results on Karl Jansky Very Large Array (JVLA) deep S-band (2-4 GHz) observation towards a protocluster 4C23.56 at redshift z ∼ 2.5. The protocluster 4C23.56 is known to have a significant over density (∼ 5 times) of star-burst galaxies selected to be Hα line-bright by a Subaru narrow band imaging. Now we have found 25 HAEs associated with the protocluster. These starburst HAEs are likely to become massive ellipticals at z = 0 in a cluster. Various other galaxy populations also reside in this field and the fact makes the field very unique as a tool to understand galaxy formation in a over dense region. Subsequent deep 1100-μm continuum surveys by the ASTE 10-m dish have discovered that several submillimeter bright galaxies (SMGs) coincide with HAEs, suggesting HAEs undergoing dusty starbursts. As star formation rates (SFRs) of HAEs might have been underestimated, we use radio being resistant to dust extinction. We investigate the correlation between SFR1.4 GHz and SFRHα for radio index α = 0.8 to see if the correlation holds for the sources and to check the number of dusty star forming galaxies. Our final results will allow us to evaluate quantitatively how the galaxy formation channel may be different under the condition of over-densities.


2011 ◽  
Vol 7 (S279) ◽  
pp. 118-121
Author(s):  
J. L. Bibby ◽  
P. A. Crowther ◽  
A. F. J. Moffat ◽  
M. M. Shara ◽  
D. Zurek ◽  
...  

AbstractWolf-Rayet (WR) stars are the evolved descendants of massive O-type stars and are considered to be progenitor candidates for Type Ib/c core-collapse supernovae (SNe). Recent results of our HST/WFC3 survey of Wolf-Rayet stars in M101 are summarised based on the detection efficiency of narrow-band optical imaging compared to broad-band methods. We show that on average 42% of WR stars, increasing to ~85% in central regions, are only detected in the narrow-band imaging. Hence, the non-detection of a WR star at the location of ~10 Type Ib/c SNe in broad-band imaging is no longer strong evidence for a non-WR progenitor channel.


2013 ◽  
Vol 9 (S304) ◽  
pp. 341-342
Author(s):  
E. Bañados ◽  
B. P. Venemans ◽  
Fabian Walter ◽  
Jaron Kurk ◽  
Roderik Overzier ◽  
...  

AbstractHigh-redshift quasars are thought to reside in the most massive halos in the early universe and should therefore be located in fields with overdensities of galaxies, which are expected to evolve into galaxy clusters seen in the local Universe. In Bañados et al. (2013), we used deep narrow-band imaging to study the environment of the z=5.72 quasar ULAS J0203 + 0012. The redshift range probed by our narrow band selection is Δz ~ 0.1. This was the first time that Lyman alpha emitters (LAEs) were searched for near a z ~ 6 quasar, to provide clues on the surroundings of quasars at the end of the epoch of reionization. The main result of this work is that no enhancement of LAEs has been found in the surroundings of ULAS J0203 + 0012. We discuss different explanations and interpretations for this non-detection of a galaxy overdensity.


2021 ◽  
Vol 2021 (12) ◽  
pp. 013
Author(s):  
Luca Tortorelli ◽  
Malgorzata Siudek ◽  
Beatrice Moser ◽  
Tomasz Kacprzak ◽  
Pascale Berner ◽  
...  

Abstract Narrow-band imaging surveys allow the study of the spectral characteristics of galaxies without the need of performing their spectroscopic follow-up. In this work, we forward-model the Physics of the Accelerating Universe Survey (PAUS) narrow-band data. The aim is to improve the constraints on the spectral coefficients used to create the galaxy spectral energy distributions (SED) of the galaxy population model in Tortorelli et al. 2020. In that work, the model parameters were inferred from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) data using Approximate Bayesian Computation (ABC). This led to stringent constraints on the B-band galaxy luminosity function parameters, but left the spectral coefficients only broadly constrained. To address that, we perform an ABC inference using CFHTLS and PAUS data. This is the first time our approach combining forward-modelling and ABC is applied simultaneously to multiple datasets. We test the results of the ABC inference by comparing the narrow-band magnitudes of the observed and simulated galaxies using Principal Component Analysis, finding a very good agreement. Furthermore, we prove the scientific potential of the constrained galaxy population model to provide realistic stellar population properties by measuring them with the SED fitting code CIGALE. We use CFHTLS broad-band and PAUS narrow-band photometry for a flux-limited (i < 22.5) sample of galaxies up to redshift z ∼ 0.8. We find that properties like stellar masses, star-formation rates, mass-weighted stellar ages and metallicities are in agreement within errors between observations and simulations. Overall, this work shows the ability of our galaxy population model to correctly forward-model a complex dataset such as PAUS and the ability to reproduce the diversity of galaxy properties at the redshift range spanned by CFHTLS and PAUS.


2018 ◽  
Vol 612 ◽  
pp. A35 ◽  
Author(s):  
R. Galera-Rosillo ◽  
R. L. M. Corradi ◽  
A. Mampaso

Context. Planetary nebulae (PNe) are excellent tracers of stellar populations with low surface brightness, and therefore provide a powerful method to detect and explore the rich system of substructures discovered around the main spiral galaxies of the local group. Aim. We searched the outskirts of the local group spiral galaxy M 33 (the Triangulum) for PNe to gain new insights into the extended stellar substructure on the northern side of the disc and to study the existence of a faint classical halo. Methods. The search is based on wide field imaging covering a 4.5 square degree area out to a maximum projected distance of about 40 kpc from the centre of the galaxy. The PN candidates are detected by the combination of images obtained in narrowband filters selecting the [OIII]λ5007 Å and Hα + [NII] nebular lines and in the continuum g′ and r′ broadband filters. Results. Inside the bright optical disc of M 33, eight new PN candidates were identified, three of which were spectroscopically confirmed. No PN candidates were found outside the limits of the disc. Fourteen additional sources showing [OIII] excess were also discovered. Conclusions. The absence of bright PN candidates in the area outside the galaxy disc covered by this survey sets an upper limit to the luminosity of the underlying population of ~1.6 × 107 L⊙, suggesting the lack of a massive classical halo, which is in agreement with the results obtained using the red giant branch population.


Galaxies ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 49
Author(s):  
Joel H. Kastner ◽  
Jesse Bublitz ◽  
Bruce Balick ◽  
Rodolfo Montez ◽  
Adam Frank ◽  
...  

We present the first results from comprehensive, near-UV-to-near-IR Hubble Space Telescope Wide Field Camera 3 (WFC3) emission-line imaging studies of two young planetary nebulae (PNe), NGC 7027 and NGC 6302. These two objects represent key sources for purposes of understanding PNe shaping processes. Both nebulae feature axisymmetric and point-symmetric (bipolar) structures and, despite hot central stars and high nebular excitation states, both harbor large masses of molecular gas and dust. The sweeping wavelength coverage of our Cycle 27 Hubble Space Telescope (HST)/WFC3 imaging surveys targeting these two rapidly evolving PNe will provide a battery of essential tests for theories describing the structural and chemical evolution of evolved star ejecta. Here, we present initial color overlays for selected images, and we highlight some of the first results gleaned from the surveys.


Sign in / Sign up

Export Citation Format

Share Document