scholarly journals An Observational Perspective of the IMF: Progress and Challenges

2015 ◽  
Vol 11 (S315) ◽  
pp. 73-80 ◽  
Author(s):  
Stella S. R. Offner

AbstractThe stellar initial mass function (IMF) is a fundamental astrophysical quantity that impacts a wide range of astrophysical problems from heavy element distribution to galactic evolution to planetary system formation. However, the origin and universality of the IMF are hotly debated both observationally and theoretically. I review recent observations of the IMF across a variety of environments. These suggest the IMF is surprisingly invariant between star-forming regions, star clusters, and spiral galaxies but that it may also vary under extreme conditions, including within the Galactic center and early type galaxies.

2021 ◽  
Vol 923 (1) ◽  
pp. 120
Author(s):  
Fu-Heng Liang ◽  
Cheng Li ◽  
Niu Li ◽  
Shuang Zhou ◽  
Renbin Yan ◽  
...  

Abstract As hosts of living high-mass stars, Wolf-Rayet (WR) regions or WR galaxies are ideal objects for constraining the high-mass end of the stellar initial mass function (IMF). We construct a large sample of 910 WR galaxies/regions that cover a wide range of stellar metallicity (from Z ∼ 0.001 to 0.03) by combining three catalogs of WR galaxies/regions previously selected from the SDSS and SDSS-IV/MaNGA surveys. We measure the equivalent widths of the WR blue bump at ∼4650 Å for each spectrum. They are compared with predictions from stellar evolutionary models Starburst99 and BPASS, with different IMF assumptions (high-mass slope α of the IMF ranging from 1.0 to 3.3). Both singular evolution and binary evolution are considered. We also use a Bayesian inference code to perform full spectral fitting to WR spectra with stellar population spectra from BPASS as fitting templates. We then make a model selection among different α assumptions based on Bayesian evidence. These analyses have consistently led to a positive correlation of the IMF high-mass slope α with stellar metallicity Z, i.e., with a steeper IMF (more bottom-heavy) at higher metallicities. Specifically, an IMF with α = 1.00 is preferred at the lowest metallicity (Z ∼ 0.001), and an Salpeter or even steeper IMF is preferred at the highest metallicity (Z ∼ 0.03). These conclusions hold even when binary population models are adopted.


2003 ◽  
Vol 212 ◽  
pp. 642-651 ◽  
Author(s):  
Daniel Schaerer

We review our current knowledge on the IMF in nearby environments, massive star forming regions, super star clusters, starbursts and alike objects from studies of integrated light, and discuss the various techniques used to constrain the IMF. In most cases, including UV-optical studies of stellar features and optical-IR analysis of nebular emission, the data is found to be compatible with a ‘universal’ Salpeter-like IMF with a high upper mass cut-off over a large metallicity range. In contrast, near-IR observations of nuclear starbursts and LIRG show indications of a lowerMupand/or a steeper IMF slope, for which no alternate explanation has yet been found. Also, dynamical mass measurements of seven super star clusters provide so far no simple picture of the IMF. Finally, we present recent results of a direct stellar probe of the upper end of the IMF in metal-rich H ii regions, showing no deficiency of massive stars at high metallicity, and determining a lower limit ofMup≳ 60 – 90 M⊙.


1998 ◽  
Vol 11 (1) ◽  
pp. 423-424
Author(s):  
Motohide Tamura ◽  
Yoichi Itoh ◽  
Yumiko Oasa ◽  
Alan Tokunaga ◽  
Koji Sugitani

Abstract In order to tackle the problems of low-mass end of the initial mass function (IMF) in star-forming regions and the formation mechanisms of brown dwarfs, we have conducted deep infrared surveys of nearby molecular clouds. We have found a significant population of very low-luminosity sources with IR excesses in the Taurus cloud and the Chamaeleon cloud core regions whose extinction corrected J magnitudes are 3 to 8 mag fainter than those of typical T Tauri stars in the same cloud. Some of them are associated with even fainter companions. Follow-up IR spectroscopy has confirmed for the selected sources that their photospheric temperature is around 2000 to 3000 K. Thus, these very low-luminosity young stellar sources are most likely very low-mass T Tauri stars, and some of them might even be young brown dwarfs.


Author(s):  
I. Ferreras ◽  
C. Weidner ◽  
A. Vazdekis ◽  
F. La Barbera

The stellar initial mass function (IMF) is one of the fundamental pillars in studies of stellar populations. It is the mass distribution of stars at birth, and it is traditionally assumed to be universal, adopting generic functions constrained by resolved (i.e. nearby) stellar populations (e.g., Salpeter 1955; Kroupa 2001; Chabrier 2003). However, for the vast majority of cases, stars are not resolved in galaxies. Therefore, the interpretation of the photo-spectroscopic observables is complicated by the many degeneracies present between the properties of the unresolved stellar populations, including IMF, age distribution, and chemical composition. The overall good match of the photometric and spectroscopic observations of galaxies with population synthesis models, adopting standard IMF choices, made this issue a relatively unimportant one for a number of years. However, improved models and observations have opened the door to constraints on the IMF in unresolved stellar populations via gravity-sensitive spectral features. At present, there is significant evidence of a non-universal IMF in early-type galaxies (ETGs), with a trend towards a dwarf-enriched distribution in the most massive systems (see, e.g., van Dokkum & Conroy 2010; Ferreras et al. 2013; La Barbera et al. 2013). Dynamical and strong-lensing constraints of the stellar M/L in similar systems give similar results, with heavier M/L in the most massive ETGs (see, e.g., Cappellari et al. 2012; Posacki et al. 2015). Although the interpretation of the results is still open to discussion (e.g., Smith 2014; La Barbera 2015), one should consider the consequences of such a bottom-heavy IMF in massive galaxies.


2007 ◽  
Vol 3 (S250) ◽  
pp. 415-428
Author(s):  
Max Pettini

AbstractThe five years that have passed since the last IAU Symposium devoted to massive stars have seen a veritable explosion of data on the high redshift universe. The tools developed to study massive stars in nearby galaxies are finding increasing application to the analysis of the spectra of star-forming regions at redshifts as high as z = 7. In this brief review, I consider three topics of relevance to this symposium: the determination of the metallicities of galaxies at high redshifts from consideration of their ultraviolet stellar spectra; constraints on the initial mass function of massive stars in galaxies at z = 2 − 3; and new clues to the nucleosynthesis of carbon and nitrogen in massive stars of low metallicity. The review concludes with a look ahead at some of the questions that may occupy us for the next five years (at least!).


2021 ◽  
Vol 923 (1) ◽  
pp. 43
Author(s):  
Pieter van Dokkum ◽  
Charlie Conroy

Abstract Mass measurements and absorption-line studies indicate that the stellar initial mass function (IMF) is bottom-heavy in the central regions of many early-type galaxies, with an excess of low-mass stars compared to the IMF of the Milky Way. Here we test this hypothesis using a method that is independent of previous techniques. Low-mass stars have strong chromospheric activity characterized by nonthermal emission at short wavelengths. Approximately half of the UV flux of M dwarfs is contained in the λ1215.7 Lyα line, and we show that the total Lyα emission of an early-type galaxy is a sensitive probe of the IMF with a factor of ∼2 flux variation in response to plausible variations in the number of low-mass stars. We use the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure the Lyα line in the centers of the massive early-type galaxies NGC 1407 and NGC 2695. We detect Lyα emission in both galaxies and demonstrate that it originates in stars. We find that the Lyα to i-band flux ratio is a factor of 2.0 ± 0.4 higher in NGC 1407 than in NGC 2695, in agreement with the difference in their IMFs as previously determined from gravity-sensitive optical absorption lines. Although a larger sample of galaxies is required for definitive answers, these initial results support the hypothesis that the IMF is not universal but varies with environment.


2020 ◽  
Vol 499 (1) ◽  
pp. 559-572
Author(s):  
Carlo Nipoti ◽  
Carlo Cannarozzo ◽  
Francesco Calura ◽  
Alessandro Sonnenfeld ◽  
Tommaso Treu

ABSTRACT The stellar initial mass function (IMF) is believed to be non-universal among early-type galaxies (ETGs). Parametrizing the IMF with the so-called IMF mismatch parameter αIMF, which is a measure of the stellar mass-to-light ratio of an ensemble of stars and thus of the ‘heaviness’ of its IMF, one finds that for ETGs αe (i.e. αIMF integrated within the effective radius Re) increases with σe (the line-of-sight velocity dispersion σlos integrated within Re) and that, within the same ETG, αIMF tends to decrease outwards. We study the effect of dissipationless (dry) mergers on the distribution of the IMF mismatch parameter αIMF in ETGs using the results of binary major and minor merging simulations. We find that dry mergers tend to make the αIMF profiles of ETGs shallower, but do not alter significantly the shape of the distributions in the spatially resolved σlos–αIMF space. Individual galaxies undergoing dry mergers tend to decrease their αe, due to erosion of αIMF gradients and mixing with stellar populations with lighter IMF. Their σe can either decrease or increase, depending on the merging orbital parameters and mass ratio, but tends to decrease for cosmologically motivated merging histories. The αe–σe relation can vary with redshift as a consequence of the evolution of individual ETGs: based on a simple dry-merging model, ETGs of given σe are expected to have higher αe at higher redshift, unless the accreted satellites are so diffuse that they contribute negligibly to the inner stellar distribution of the merger remnant.


2019 ◽  
Vol 486 (3) ◽  
pp. 3788-3804 ◽  
Author(s):  
Elham Eftekhari ◽  
Moein Mosleh ◽  
Alexandre Vazdekis ◽  
Saeed Tavasoli

ABSTRACT Using samples drawn from the Sloan Digital Sky Survey, we study for the first time the relation between large-scale environments (clusters, groups, and voids) and the stellar initial mass function (IMF). We perform an observational approach based on the comparison of IMF-sensitive indices of quiescent galaxies with similar mass in varying environments. These galaxies are selected within a narrow redshift interval (0.020 < z < 0.055) and spanning a range in velocity dispersion from 100 to 200 km s−1. The results of this paper are based upon analysis of composite spectra created by stacking the spectra of galaxies, binned by their velocity dispersion and redshift. The trends of spectral indices as measured from the stacked spectra, with respect to velocity dispersion, are compared in different environments. We find a lack of dependence of the IMF on the environment for intermediate-mass galaxy regime. We verify this finding by providing a more quantitative measurement of the IMF variations among galactic environments using MILES stellar population models with a precision of ΔΓb ∼ 0.2.


2012 ◽  
Vol 8 (S292) ◽  
pp. 87-90
Author(s):  
L. Testi ◽  
E. Bressert ◽  
S. Longmore

AbstractWe summarize some of the results obtained from Herschel surveys of nearby star forming regions and the Galactic plane. We show that in the nearby star forming regions the starless core spatial surface density distribution is very similar to that of the young stellar objects. This, taken together with the similarity between the core mass function and the initial mass function for stars and the relationship between the amount of dense gas and star formation rate, suggest that the cloud fragmentation process defines the global outcome of star formation. This “simple” view of star formation may not hold on all scales. In particular dynamical interactions are expected to become important at the conditions required to form young massive clusters. We describe the successes of a simple criterion to identify young massive cluster precursors in our Galaxy based on (sub-)millimeter wide area surveys. We further show that in the location of our Galaxy where the best candidate for a precursor of a young massive cluster is found, the “simple” scaling relationship between dense gas and star formation rate appear to break down. We suggest that in regions where the conditions approach those of the central molecular zone of our Galaxy it may be necessary to revise the scaling laws for star formation.


2018 ◽  
Vol 620 ◽  
pp. A39 ◽  
Author(s):  
T. Jeřábková ◽  
A. Hasani Zonoozi ◽  
P. Kroupa ◽  
G. Beccari ◽  
Z. Yan ◽  
...  

The stellar initial mass function (IMF) is commonly assumed to be an invariant probability density distribution function of initial stellar masses. These initial stellar masses are generally represented by the canonical IMF, which is defined as the result of one star formation event in an embedded cluster. As a consequence, the galaxy-wide IMF (gwIMF) should also be invariant and of the same form as the canonical IMF; gwIMF is defined as the sum of the IMFs of all star-forming regions in which embedded clusters form and spawn the galactic field population of the galaxy. Recent observational and theoretical results challenge the hypothesis that the gwIMF is invariant. In order to study the possible reasons for this variation, it is useful to relate the observed IMF to the gwIMF. Starting with the IMF determined in resolved star clusters, we apply the IGIMF-theory to calculate a comprehensive grid of gwIMF models for metallicities, [Fe/H] ∈ (−3, 1), and galaxy-wide star formation rates (SFRs), SFR ∈ (10−5, 105) M⊙ yr−1. For a galaxy with metallicity [Fe/H] < 0 and SFR > 1 M⊙ yr−1, which is a common condition in the early Universe, we find that the gwIMF is both bottom light (relatively fewer low-mass stars) and top heavy (more massive stars), when compared to the canonical IMF. For a SFR < 1 M⊙ yr−1 the gwIMF becomes top light regardless of the metallicity. For metallicities [Fe/H] > 0 the gwIMF can become bottom heavy regardless of the SFR. The IGIMF models predict that massive elliptical galaxies should have formed with a gwIMF that is top heavy within the first few hundred Myr of the life of the galaxy and that it evolves into a bottom heavy gwIMF in the metal-enriched galactic centre. Using the gwIMF grids, we study the SFR−Hα relation and its dependency on metallicity and the SFR. We also study the correction factors to the Kennicutt SFRK − Hα relation and provide new fitting functions. Late-type dwarf galaxies show significantly higher SFRs with respect to Kennicutt SFRs, while star-forming massive galaxies have significantly lower SFRs than hitherto thought. This has implications for gas-consumption timescales and for the main sequence of galaxies. We explicitly discuss Leo P and ultra-faint dwarf galaxies.


Sign in / Sign up

Export Citation Format

Share Document