scholarly journals Universal void density profiles from simulation and SDSS

2014 ◽  
Vol 11 (S308) ◽  
pp. 542-545 ◽  
Author(s):  
S. Nadathur ◽  
S. Hotchkiss ◽  
J. M. Diego ◽  
I. T. Iliev ◽  
S. Gottlöber ◽  
...  

AbstractWe discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation areself-similar, meaning that their average rescaled profile does not depend on the void size, or – within the range of the simulated catalogue – on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show auniversalbehaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

2017 ◽  
Vol 284 (1846) ◽  
pp. 20162395 ◽  
Author(s):  
Kohei Koyama ◽  
Ken Yamamoto ◽  
Masayuki Ushio

Lognormal distributions and self-similarity are characteristics associated with a wide range of biological systems. The sequential breakage model has established a link between lognormal distributions and self-similarity and has been used to explain species abundance distributions. To date, however, there has been no similar evidence in studies of multicellular organismal forms. We tested the hypotheses that the distribution of the lengths of terminal stems of Japanese elm trees ( Ulmus davidiana ), the end products of a self-similar branching process, approaches a lognormal distribution. We measured the length of the stem segments of three elm branches and obtained the following results: (i) each occurrence of branching caused variations or errors in the lengths of the child stems relative to their parent stems; (ii) the branches showed statistical self-similarity; the observed error distributions were similar at all scales within each branch and (iii) the multiplicative effect of these errors generated variations of the lengths of terminal twigs that were well approximated by a lognormal distribution, although some statistically significant deviations from strict lognormality were observed for one branch. Our results provide the first empirical evidence that statistical self-similarity of an organismal form generates a lognormal distribution of organ sizes.


Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 192-197
Author(s):  
Eugenio Azpeitia ◽  
Gabrielle Tichtinsky ◽  
Marie Le Masson ◽  
Antonio Serrano-Mislata ◽  
Jérémy Lucas ◽  
...  

Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the “memory” of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 741-750 ◽  
Author(s):  
José Luis Roca ◽  
German Rodríguez-Bermúdez ◽  
Manuel Fernández-Martínez

AbstractAlong this paper, we shall update the state-of-the-art concerning the application of fractal-based techniques to test for fractal patterns in physiological time series. As such, the first half of the present work deals with some selected approaches to deal with the calculation of the self-similarity exponent of time series. They include broadly-used procedures as well as recent advances improving their accuracy and performance for a wide range of self-similar processes. The second part of this paper consists of a detailed review of high-quality studies carried out in the context of electroencephalogram signals. Both medical and non-medical applications have been deeply reviewed. This work is especially recommended to all those researchers especially interested in fractal pattern recognition for physiological time series.


2003 ◽  
Vol 20 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Wolfgang Tschager ◽  
Richard Schilizzi ◽  
Huub Röttgering ◽  
Ignas Snellen ◽  
George Miley ◽  
...  

AbstractThe main topic of this contribution is the investigation of the morphological self-similarity of the growth process during the gigahertz peaked spectrum (GPS) and compact steep spectrum (CSS) phase of evolving radio galaxies. By investigating a new sample of faint CSS radio sources we establish that self-similar evolution must hold for peaked spectrum sources over a wide range of luminosities as well as physical sizes. Thus, we argue that self-similarity should be regarded as an essential, intrinsic characteristic of the growth process of young radio sources, and be treated as such, and not merely as a supplementary constraint for evolution models.


Fractals ◽  
1994 ◽  
Vol 02 (01) ◽  
pp. 45-52 ◽  
Author(s):  
A. V. NEIMARK ◽  
E. ROBENS ◽  
K. K. UNGER ◽  
Yu. M. VOLFKOYICH

Sphagnum peat gives an example of a swelling system with a self-similar structure in sufficiently wide range of scales. The surface fractal dimension, dfs, has been calculated by means of thermodynamic method on the basis of water adsorption and capillary equilibrium measurements. This method makes possible the exploration of the self-similarity in the scale range over at least 4 decimal orders of magnitude from 1 nm to 10 μm. In a sample explored, two ranges of fractality have been observed: dfs ≈ 2.55 in the range 1.5–80 nm and dfs ≈ 2.42 in the range 0.25–9 µm.


2020 ◽  
Vol 498 (3) ◽  
pp. 3061-3076
Author(s):  
Dylan Robson ◽  
Romeel Davé

ABSTRACT We examine X-ray scaling relations for massive haloes ($M_{500}\gt 10^{12.3}\, \mathrm{M}_\odot$) in the simba galaxy formation simulation. The X-ray luminosity, LX versus M500 has power-law slopes ${\approx }\frac{5}{3}$ and ${\approx }\frac{8}{3}$ above and below $10^{13.5} \, \mathrm{M}_{\odot }$, deviating from the self-similarity increasingly to low masses. TX − M500 is self-similar above this mass, and slightly shallower below it. Comparing simba to observed TX scalings, we find that LX, LX-weighted [Fe/H], and entropies at 0.1R200 (S0.1) and R500 (S500) all match reasonably well. S500 − TX is consistent with self-similar expectations, but S0.1 − TX is shallower at lower TX, suggesting the dominant form of heating moves from gravitational shocks in the outskirts to non-gravitational feedback in the cores of smaller groups. simba matches observations of LX versus central galaxy stellar mass M*, predicting the additional trend that star-forming galaxies have higher LX(M*). Electron density profiles for $M_{500}\gt 10^{14}\, \mathrm{M}_\odot$ haloes show a ∼0.1R200 core, but the core is larger at lower masses. TX are reasonably matched to observations, but entropy profiles are too flat versus observations for intermediate-mass haloes, with Score ≈ 200–400 keV cm2. simba’s [Fe/H] profile matches observations in the core but overenriches larger radii. We demonstrate that Simba’s bipolar jet AGN feedback is most responsible for increasingly evacuating lower-mass haloes, but the profile comparisons suggest this may be too drastic in the inner regions.


2005 ◽  
Vol 12 (6) ◽  
pp. 891-945 ◽  
Author(s):  
S. I. Badulin ◽  
A. N. Pushkarev ◽  
D. Resio ◽  
V. E. Zakharov

Abstract. The results of theoretical and numerical study of the Hasselmann kinetic equation for deep water waves in presence of wind input and dissipation are presented. The guideline of the study: nonlinear transfer is the dominating mechanism of wind-wave evolution. In other words, the most important features of wind-driven sea could be understood in a framework of conservative Hasselmann equation while forcing and dissipation determine parameters of a solution of the conservative equation. The conservative Hasselmann equation has a rich family of self-similar solutions for duration-limited and fetch-limited wind-wave growth. These solutions are closely related to classic stationary and homogeneous weak-turbulent Kolmogorov spectra and can be considered as non-stationary and non-homogeneous generalizations of these spectra. It is shown that experimental parameterizations of wind-wave spectra (e.g. JONSWAP spectrum) that imply self-similarity give a solid basis for comparison with theoretical predictions. In particular, the self-similarity analysis predicts correctly the dependence of mean wave energy and mean frequency on wave age Cp / U10. This comparison is detailed in the extensive numerical study of duration-limited growth of wind waves. The study is based on algorithm suggested by Webb (1978) that was first realized as an operating code by Resio and Perrie (1989, 1991). This code is now updated: the new version is up to one order faster than the previous one. The new stable and reliable code makes possible to perform massive numerical simulation of the Hasselmann equation with different models of wind input and dissipation. As a result, a strong tendency of numerical solutions to self-similar behavior is shown for rather wide range of wave generation and dissipation conditions. We found very good quantitative coincidence of these solutions with available results on duration-limited growth, as well as with experimental parametrization of fetch-limited spectra JONSWAP in terms of wind-wave age Cp / U10.


2016 ◽  
Vol 10 (1) ◽  
pp. 371-384 ◽  
Author(s):  
Martin Proksch ◽  
Nick Rutter ◽  
Charles Fierz ◽  
Martin Schneebeli

Abstract. Density is a fundamental property of porous media such as snow. A wide range of snow properties and physical processes are linked to density, but few studies have addressed the uncertainty in snow density measurements. No study has yet quantitatively considered the recent advances in snow measurement methods such as micro-computed tomography (μCT) in alpine snow. During the MicroSnow Davos 2014 workshop, different approaches to measure snow density were applied in a controlled laboratory environment and in the field. Overall, the agreement between μCT and gravimetric methods (density cutters) was 5 to 9 %, with a bias of −5 to 2 %, expressed as percentage of the mean μCT density. In the field, density cutters overestimate (1 to 6 %) densities below and underestimate (1 to 6 %) densities above a threshold between 296 to 350 kg m−3, dependent on cutter type. Using the mean density per layer of all measurement methods applied in the field (μCT, box, wedge, and cylinder cutters) and ignoring ice layers, the variation between the methods was 2 to 5 % with a bias of −1 to 1 %. In general, our result suggests that snow densities measured by different methods agree within 9 %. However, the density profiles resolved by the measurement methods differed considerably. In particular, the millimeter-scale density variations revealed by the high-resolution μCT contrasted the thick layers with sharp boundaries introduced by the observer. In this respect, the unresolved variation, i.e., the density variation within a layer which is lost by lower resolution sampling or layer aggregation, is critical when snow density measurements are used in numerical simulations.


2021 ◽  
Vol 504 (2) ◽  
pp. 2325-2345
Author(s):  
Emanuel Sillero ◽  
Patricia B Tissera ◽  
Diego G Lambas ◽  
Stefano Bovino ◽  
Dominik R Schleicher ◽  
...  

ABSTRACT We present p-gadget3-k, an updated version of gadget-3, that incorporates the chemistry package krome. p-gadget3-k follows the hydrodynamical and chemical evolution of cosmic structures, incorporating the chemistry and cooling of H2 and metal cooling in non-equilibrium. We performed different runs of the same ICs to assess the impact of various physical parameters and prescriptions, namely gas metallicity, molecular hydrogen formation on dust, star formation recipes including or not H2 dependence, and the effects of numerical resolution. We find that the characteristics of the simulated systems, both globally and at kpc-scales, are in good agreement with several observable properties of molecular gas in star-forming galaxies. The surface density profiles of star formation rate (SFR) and H2 are found to vary with the clumping factor and resolution. In agreement with previous results, the chemical enrichment of the gas component is found to be a key ingredient to model the formation and distribution of H2 as a function of gas density and temperature. A star formation algorithm that takes into account the H2 fraction together with a treatment for the local stellar radiation field improves the agreement with observed H2 abundances over a wide range of gas densities and with the molecular Kennicutt–Schmidt law, implying a more realistic modelling of the star formation process.


Author(s):  
Nufar Sukenik ◽  
Laurice Tuller

AbstractStudies on the lexical semantic abilities of children with autism have yielded contradicting results. The aim of the current review was to explore studies that have specifically focused on the lexical semantic abilities of children with ASD and try to find an explanation for these contradictions. In the 32 studies reviewed, no single factor was found to affect lexical semantic skills, although children with broader linguistic impairment generally, but not universally, also showed impaired lexical semantic skills. The need for future studies with young ASD participants, with differing intellectual functioning, longitudinal studies, and studies assessing a wide range of language domains are discussed.


Sign in / Sign up

Export Citation Format

Share Document