scholarly journals Flows along arch filaments observed in the GRIS ‘very fast spectroscopic mode’

2016 ◽  
Vol 12 (S327) ◽  
pp. 28-33
Author(s):  
S. J. González Manrique ◽  
C. Denker ◽  
C. Kuckein ◽  
A. Pastor Yabar ◽  
M. Collados ◽  
...  

AbstractA new generation of solar instruments provides improved spectral, spatial, and temporal resolution, thus facilitating a better understanding of dynamic processes on the Sun. High-resolution observations often reveal multiple-component spectral line profiles, e.g., in the near-infrared He i 10830 Å triplet, which provides information about the chromospheric velocity and magnetic fine structure. We observed an emerging flux region, including two small pores and an arch filament system, on 2015 April 17 with the ‘very fast spectroscopic mode’ of the GREGOR Infrared Spectrograph (GRIS) situated at the 1.5-meter GREGOR solar telescope at Observatorio del Teide, Tenerife, Spain. We discuss this method of obtaining fast (one per minute) spectral scans of the solar surface and its potential to follow dynamic processes on the Sun. We demonstrate the performance of the ‘very fast spectroscopic mode’ by tracking chromospheric high-velocity features in the arch filament system.

Author(s):  
Riccardo U. Claudi ◽  
Adriano Ghedina ◽  
Emanuele Pace ◽  
Anna Maria Di Giorgio ◽  
Valentina D'Orazi ◽  
...  

1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jørgen Christensen-Dalsgaard

AbstractThe Sun provides a critical benchmark for the general study of stellar structure and evolution. Also, knowledge about the internal properties of the Sun is important for the understanding of solar atmospheric phenomena, including the solar magnetic cycle. Here I provide a brief overview of the theory of stellar structure and evolution, including the physical processes and parameters that are involved. This is followed by a discussion of solar evolution, extending from the birth to the latest stages. As a background for the interpretation of observations related to the solar interior I provide a rather extensive analysis of the sensitivity of solar models to the assumptions underlying their calculation. I then discuss the detailed information about the solar interior that has become available through helioseismic investigations and the detection of solar neutrinos, with further constraints provided by the observed abundances of the lightest elements. Revisions in the determination of the solar surface abundances have led to increased discrepancies, discussed in some detail, between the observational inferences and solar models. I finally briefly address the relation of the Sun to other similar stars and the prospects for asteroseismic investigations of stellar structure and evolution.


Author(s):  
O. Strilets

The dynamic processes in the device for speed control with multistage gear differential and closed-loop hydraulic systems through ring gears have been studied for case when the leading link is the sun gear of the first stage, and the driven is a carrier of the last stage. For such a device, the equation of kinetic energy has been compiled and the dynamics equations have been obtained by the Lagrange method, which have been solved. The obtained results are the basis for further computer simulation on and quantitative analysis to assess the performance of such devices and select the necessary closed-loop hydraulic systems to control speed changes.


2020 ◽  
Vol 10 ◽  
pp. 58
Author(s):  
Luca Giovannelli ◽  
Francesco Berrilli ◽  
Daniele Calchetti ◽  
Dario Del Moro ◽  
Giorgio Viavattene ◽  
...  

By the continuous multi-line observation of the solar atmosphere, it is possible to infer the magnetic and dynamical status of the Sun. This activity is essential to identify the possible precursors of space weather events, such as flare or coronal mass ejections. We describe the design and assembly of TSST (Tor Vergata Synoptic Solar Telescope), a robotic synoptic telescope currently composed of two main full-disk instruments, a Hα telescope and a Potassium (KI D1) magneto-optical filter (MOF)-based telescope operating at 769.9 nm. TSST is designed to be later upgraded with a second MOF channel. This paper describes the TSST concepts and presents the first light observation carried out in February 2020. We show that TSST is a low-cost robotic facility able to achieve the necessary data for the study of precursors of space weather events (using the magnetic and velocity maps by the MOF telescope) and fast flare detection (by the Hα telescope) to support Space Weather investigation and services.


1992 ◽  
Vol 395 ◽  
pp. 403 ◽  
Author(s):  
Keith L. Thompson

1990 ◽  
Vol 121 ◽  
pp. 437-448
Author(s):  
A. Baglin ◽  
Y. Lebreton

AbstractObservations of the surface abundances of lithium, beryllium and helium-3 in the Sun and in solar-type stars of different ages should be interpreted in a coherent way. The abundance of lithium at the surface of a star decreases slowly with age; for stars of the same age it decreases with mass and a dependence on the rotation velocity is suggested. The solar surface lithium is depleted by a factor of 100 relative to the cosmic abundance while an He-3 enrichment of 15% at the solar surface during evolution is suggested.Observations favour the hypothesis of a slow transport process at work between the outer convective zone and the radiative interior of these stars. Orders of magnitude of the transport coefficient as well as its dependence upon the physical parameters can be inferred from surface abundances of light elements, but at the moment we are far from producing a completely consistent modelization.


1991 ◽  
Vol 130 ◽  
pp. 37-56
Author(s):  
Paul H. Roberts

AbstractIn addition to the well-known granulation and supergranulation of the solar convection zone (the “SCZ”), the presence of so-called “giant cells” has been postulated. These are supposed span the entire thickness of the SCZ and to stretch from pole to pole in a sequence of elongated cells like a “cartridge belt” or a bunch of “bananas” strung uniformly round the Sun. Conclusive evidence for the existence of such giant cells is still lacking, despite strenuous observational efforts to find them. After analyses of sunspot motion, Ribes and others believe that convective motions near the solar surface occurs in a pattern that is the antithesis of the cartridge belt: a system of “toroidal” or “doughnut” cells, girdling the Sun in a sequence that extends from one pole to the other. Galloway, Jones and Roberts have recently tried to meet the resulting theoretical challenge, with the mixed success reported in this paper.


The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3601-3620 ◽  
Author(s):  
Chengli Wang ◽  
Xiaomin Li ◽  
Fan Zhang

Upconversion nanoparticles (UCNPs), which can emit ultraviolet/visible (UV/Vis) light under near-infrared (NIR) excitation, are regarded as a new generation of nanoprobes because of their unique optical properties, including a virtually zero auto-fluorescence background for the improved signal-to-noise ratio, narrow emission bandwidths and high resistance to photo-bleaching.


Sign in / Sign up

Export Citation Format

Share Document