scholarly journals The First 3D Simulations of Carbon Burning in a Massive Star

2016 ◽  
Vol 12 (S329) ◽  
pp. 237-241 ◽  
Author(s):  
A. Cristini ◽  
C. Meakin ◽  
R. Hirschi ◽  
D. Arnett ◽  
C. Georgy ◽  
...  

AbstractWe present the first detailed three-dimensional hydrodynamic implicit large eddy simulations of turbulent convection for carbon burning. The simulations start with an initial radial profile mapped from a carbon burning shell within a 15 M⊙stellar evolution model. We considered 4 resolutions from 1283to 10243zones. These simulations confirm that convective boundary mixing (CBM) occurs via turbulent entrainment as in the case of oxygen burning. The expansion of the boundary into the surrounding stable region and the entrainment rate are smaller at the bottom boundary because it is stiffer than the upper boundary. The results of this and similar studies call for improved CBM prescriptions in 1D stellar evolution models.

2017 ◽  
Vol 12 (S331) ◽  
pp. 1-10
Author(s):  
R. Hirschi ◽  
D. Arnett ◽  
A. Cristini ◽  
C. Georgy ◽  
C. Meakin ◽  
...  

AbstractMassive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.


2020 ◽  
Vol 493 (4) ◽  
pp. 4987-5004 ◽  
Author(s):  
George C Angelou ◽  
Earl P Bellinger ◽  
Saskia Hekker ◽  
Alexey Mints ◽  
Yvonne Elsworth ◽  
...  

ABSTRACT Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries, and single stars alike. We compute ‘effective overshoot’ measures that reflect the extent of mixing and which can differ significantly from the input overshoot values set in the stellar evolution codes. We use constraints from pressure modes to infer the CBM properties of Kepler and CoRoT main-sequence and subgiant oscillators, as well as in two radial velocity targets (Procyon A and α Cen A). Collectively, these targets allow us to identify how measurement precision, stellar spectral type, and overshoot implementation impact the asteroseismic solution. With these new measures, we find that the ‘effective overshoot’ for most stars is in line with physical expectations and calibrations from binaries and clusters. However, two F-stars in the CoRoT field (HD 49933 and HD 181906) still necessitate high overshoot in the models. Due to short mode lifetimes, mode identification can be difficult in these stars. We demonstrate that an incongruence between the radial and non-radial modes drives the asteroseismic solution to extreme structures with highly efficient CBM as an inevitable outcome. Understanding the cause of seemingly anomalous physics for such stars is vital for inferring accurate stellar parameters from TESS data with comparable timeseries length.


2020 ◽  
Vol 493 (4) ◽  
pp. 4748-4762
Author(s):  
G Wagstaff ◽  
M M Miller Bertolami ◽  
A Weiss

ABSTRACT The treatment of convective boundaries remains an important source of uncertainty within stellar evolution, with drastic implications for the thermally pulsing stars on the asymptotic giant branch (AGB). Various sources are taken as motivation for the incorporation of convective boundary mixing (CBM) during this phase, from s-process nucleosynthesis to hydrodynamical models. In spite of the considerable evidence in favour of the existence of CBM on the pre-AGB evolution, this mixing is not universally included in models of TP-AGB stars. The aim of this investigation is to ascertain the extent of CBM, which is compatible with observations when considering full evolutionary models. Additionally, we investigate a theoretical argument that has been made that momentum-driven overshooting at the base of the pulse-driven convection zone should be negligible. We show that, while the argument holds, it would similarly limit mixing from the base of the convective envelope. On the other hand, estimations based on the picture of turbulent entrainment suggest that mixing is possible at both convective boundaries. We demonstrate that additional mixing at convective boundaries during core-burning phases prior to the thermally pulsing AGB has an impact on the later evolution, changing the mass range at which the third dredge-up and hot-bottom burning occur, and thus also the final surface composition. In addition, an effort has been made to constrain the efficiency of CBM at the different convective boundaries, using observational constraints. Our study suggests a strong tension between different constraints that makes it impossible to reproduce all observables simultaneously within the framework of an exponentially decaying overshooting. This result calls for a reassessment of both the models of CBM and the observational constraints.


2019 ◽  
Vol 488 (3) ◽  
pp. 4258-4270 ◽  
Author(s):  
Pavel A Denissenkov ◽  
Falk Herwig ◽  
Paul Woodward ◽  
Robert Andrassy ◽  
Marco Pignatari ◽  
...  

ABSTRACT We have modelled the multicycle evolution of rapidly accreting CO white dwarfs (RAWDs) with stable H burning intermittent with strong He-shell flashes on their surfaces for 0.7 ≤ MRAWD/M⊙ ≤ 0.75 and [Fe/H] ranging from 0 to −2.6. We have also computed the i-process nucleosynthesis yields for these models. The i process occurs when convection driven by the He-shell flash ingests protons from the accreted H-rich surface layer, which results in maximum neutron densities Nn, max ≈ 1013–1015 cm−3. The H-ingestion rate and the convective boundary mixing (CBM) parameter ftop adopted in the one-dimensional nucleosynthesis and stellar evolution models are constrained through three-dimensional (3D) hydrodynamic simulations. The mass ingestion rate and, for the first time, the scaling laws for the CBM parameter ftop have been determined from 3D hydrodynamic simulations. We confirm our previous result that the high-metallicity RAWDs have a low mass retention efficiency ($\eta \lesssim 10{{\ \rm per\ cent}}$). A new result is that RAWDs with [Fe/H] $\lesssim -2$ have $\eta \gtrsim 20{{\ \rm per\ cent}}$; therefore, their masses may reach the Chandrasekhar limit and they may eventually explode as SNeIa. This result and the good fits of the i-process yields from the metal-poor RAWDs to the observed chemical composition of the CEMP-r/s stars suggest that some of the present-day CEMP-r/s stars could be former distant members of triple systems, orbiting close binary systems with RAWDs that may have later exploded as SNeIa.


2007 ◽  
Vol 64 (3) ◽  
pp. 786-807 ◽  
Author(s):  
Robert Conzemius ◽  
Evgeni Fedorovich

Abstract A set of first-order model (FOM) equations, describing the sheared convective boundary layer (CBL) evolution, is derived. The model output is compared with predictions of the zero-order bulk model (ZOM) for the same CBL type. Large eddy simulation (LES) data are employed to test both models. The results show an advantage of the FOM over the ZOM in the prediction of entrainment, but in many CBL cases, the predictions by the two models are fairly close. Despite its relative simplicity, the ZOM is able to quantify the effects of shear production and dissipation in an integral sense—as long as the constants describing the integral dissipation of shear- and buoyancy-produced turbulence kinetic energy (TKE) are prescribed appropriately and the shear is weak enough that the denominator of the ZOM entrainment equation does not approach zero, causing a numerical instability in the solutions. Overall, the FOM better predicts the entrainment rate due to its ability to avoid this instability. Also, the FOM in a more physically consistent manner reproduces the sheared CBL entrainment zone, whose depth is controlled by a balance among shear generation, buoyancy consumption, and dissipation of TKE. Such balance is manifested by nearly constant values of Richardson numbers observed in the entrainment zone of simulated sheared CBLs. Conducted model tests support the conclusion that the surface shear generation of TKE and its corresponding dissipation, as well as the nonstationary terms, can be omitted from the integral TKE balance equation.


2008 ◽  
Vol 25 (8) ◽  
pp. 1423-1436 ◽  
Author(s):  
Danny E. Scipión ◽  
Phillip B. Chilson ◽  
Evgeni Fedorovich ◽  
Robert D. Palmer

Abstract The daytime atmospheric convective boundary layer (CBL) is characterized by strong turbulence that is primarily caused by buoyancy forced from the heated underlying surface. The present study considers a combination of a virtual radar and large eddy simulation (LES) techniques to characterize the CBL. Data representative of a daytime CBL with wind shear were generated by LES and used in the virtual boundary layer radar (BLR) with both vertical and multiple off-vertical beams and frequencies. To evaluate the virtual radar, a multiple radar experiment (MRE) was conducted using five virtual radars with common resolution volumes at two different altitudes. Three-dimensional wind fields were retrieved from the virtual radar data and compared with the LES output. It is shown that data produced from the virtual BLR are representative of what one expects to retrieve using a real BLR and the measured wind fields match those of the LES. Additionally, results from a frequency domain interferometry (FDI) comparison are presented, with the ultimate goal of enhancing the resolution of conventional radar measurements. The virtual BLR produces measurements consistent with the LES data fields and provides a suitable platform for validating radar signal processing algorithms.


2008 ◽  
Vol 4 (S252) ◽  
pp. 205-213 ◽  
Author(s):  
Falk Herwig

AbstractIn this review I am discussing the current state of simulating the internal evolution of AGB stars. Recent work on AGB stars include the effect of rotation, magnetic fields and internal gravity waves, as well as thermohaline mixing induced by the 3He + 3He pp-chain reaction. Hydrodynamic simulations of the interior convection of AGB stars are now becoming available, giving insights to convective boundary mixing, for example for He-shell flash convection. At very low metallicity convective-reactive events are encountered in AGB stars (as well as in massive stars), and the necessity of hydrodynamic simulations to address this difficult phase of stellar evolution is emphasized.


2007 ◽  
Vol 64 (7) ◽  
pp. 2642-2656 ◽  
Author(s):  
Marta Antonelli ◽  
Alessandra Lanotte ◽  
Andrea Mazzino

Abstract Turbulent fluctuations of both velocity and temperature fields, issuing from high-resolution large-eddy simulations, have been analyzed in convective boundary layers. The numerically simulated flows are strongly anisotropic at large scales: this is due both to the action of buoyancy and to the imposed geostrophic wind. Their relative weight is varied so that one experiment’s results are much more convective than the other. To properly disentangle anisotropic properties, the authors exploit both standard statistical indicators, like skewness coefficients, and the three-dimensional rotational group decomposition SO(3). Two main conclusions can be drawn. First, despite the strong anisotropies at large scales, isotropy is statistically recovered at scales much smaller than the large ones. Second, relevant statistical indicators of turbulence such as the scaling exponents, of both velocity and temperature fields, are remarkably close for the two experiments. Implications of these findings for the problem of subgrid-scale modeling are discussed.


1989 ◽  
Vol 200 ◽  
pp. 511-562 ◽  
Author(s):  
Helmut Schmidt ◽  
Ulrich Schumann

Turbulence in the convective boundary layer (CBL) uniformly heated from below and topped by a layer of uniformly stratified fluid is investigated for zero mean horizontal flow using large-eddy simulations (LES). The Rayleigh number is effectively infinite, the Froude number of the stable layer is 0.09 and the surface roughness height relative to the height of the convective layer is varied between 10−6 and 10−2. The LES uses a finite-difference method to integrate the three-dimensional grid-volume-averaged Navier–Stokes equations for a Boussinesq fluid. Subgrid-scale (SGS) fluxes are determined from algebraically approximated second-order closure (SOC) transport equations for which all essential coefficients are determined from the inertial-range theory. The surface boundary condition uses the Monin–Obukhov relationships. A radiation boundary condition at the top of the computational domain prevents spurious reflections of gravity waves. The simulation uses 160 × 160 × 48 grid cells. In the asymptotic state, the results in terms of vertical mean profiles of turbulence statistics generally agree very well with results available from laboratory and atmospheric field experiments. We found less agreement with respect to horizontal velocity fluctuations, pressure fluctuations and dissipation rates, which previous investigations tend to overestimate. Horizontal spectra exhibit an inertial subrange. The entrainment heat flux at the top of the CBL is carried by cold updraughts and warm downdraughts in the form of wisps at scales comparable with the height of the boundary layer. Plots of instantaneous flow fields show a spoke pattern in the lower quarter of the CBL which feeds large-scale updraughts penetrating into the stable layer aloft. The spoke pattern has also been found in a few previous investigations. Small-scale plumes near the surface and remote from strong updraughts do not merge together but decay while rising through large-scale downdraughts. The structure of updraughts and downdraughts is identified by three-dimensional correlation functions and conditionally averaged fields. The mean circulation extends vertically over the whole boundary layer. We find that updraughts are composed of quasi-steady large-scale plumes together with transient rising thermals which grow in size by lateral entrainment. The skewness of the vertical velocity fluctuations is generally positive but becomes negative in the lowest mesh cells when the dissipation rate exceeds the production rate due to buoyancy near the surface, as is the case for very rough surfaces. The LES results are used to determine the root-mean-square value of the surface friction velocity and the mean temperature difference between the surface and the mixed layer as a function of the roughness height. The results corroborate a simple model of the heat transfer in the surface layer.


2014 ◽  
Vol 9 (S307) ◽  
pp. 98-99 ◽  
Author(s):  
A. Cristini ◽  
R. Hirschi ◽  
C. Georgy ◽  
C. Meakin ◽  
D. Arnett ◽  
...  

AbstractIn this contribution we present initial results of a study on convective boundary mixing (CBM) in massive stellar models using the GENEVA stellar evolution code (Eggenbergeret al.2008). Before undertaking costly 3D hydrodynamic simulations, it is important to study the general properties of convective boundaries, such as the: composition jump; pressure gradient; and “stiffness”. Models for a 15M⊙star were computed. We found that for convective shells above the core, the lower (in radius or mass) boundaries are “stiffer” according to the bulk Richardson number than the relative upper (Schwarzschild) boundaries. Thus, we expect reduced CBM at the lower boundaries in comparison to the upper. This has implications on flame front propagation and the onset of novae.


Sign in / Sign up

Export Citation Format

Share Document