scholarly journals The emergence of multiple populations in radiation hydrodynamics simulations of cluster formation

2019 ◽  
Vol 14 (S351) ◽  
pp. 337-340
Author(s):  
Alison Sills

AbstractWe present a new approach to understanding star-to-star helium abundance variations within globular clusters. We begin with detailed radiation hydrodynamics simulations of cluster formation within giant molecular clouds, and investigate the conditions under which multiple populations could be created. Chemical enrichment occurs dynamically as the cluster is assembled. We test two extreme mechanisms for injection of enriched gas within the clusters, and find that realistic multiple populations can be formed in both mechanisms. The stochastic cluster formation histories are dictated by the inherent randomness of the timing and location of the formation of small clusters, which rapidly merge to build up the larger cluster, in combination with continual accretion of gas from the cloud. These cluster formation histories naturally produce a diversity of abundance patterns across the massive cluster population. We conclude that multiple populations are a natural outcome of the typical mode of star cluster formation.

Author(s):  
Yingtian Chen ◽  
Hui Li ◽  
Mark Vogelsberger

Abstract We perform a suite of hydrodynamic simulations to investigate how initial density profiles of giant molecular clouds (GMCs) affect their subsequent evolution. We find that the star formation duration and integrated star formation efficiency of the whole clouds are not sensitive to the choice of different profiles but are mainly controlled by the interplay between gravitational collapse and stellar feedback. Despite this similarity, GMCs with different profiles show dramatically different modes of star formation. For shallower profiles, GMCs first fragment into many self-gravitation cores and form sub-clusters that distributed throughout the entire clouds. These sub-clusters are later assembled ‘hierarchically’ to central clusters. In contrast, for steeper profiles, a massive cluster is quickly formed at the center of the cloud and then gradually grows its mass via gas accretion. Consequently, central clusters that emerged from clouds with shallower profiles are less massive and show less rotation than those with the steeper profiles. This is because 1) a significant fraction of mass and angular momentum in shallower profiles is stored in the orbital motion of the sub-clusters that are not able to merge into the central clusters 2) frequent hierarchical mergers in the shallower profiles lead to further losses of mass and angular momentum via violent relaxation and tidal disruption. Encouragingly, the degree of cluster rotations in steeper profiles is consistent with recent observations of young and intermediate-age clusters. We speculate that rotating globular clusters are likely formed via an ‘accretion’ mode from centrally-concentrated clouds in the early Universe.


1983 ◽  
Vol 100 ◽  
pp. 359-364
Author(s):  
K. C. Freeman

In the Milky Way, the globular clusters are all very old, and we are accustomed to think of them as the oldest objects in the Galaxy. The clusters cover a wide range of chemical abundance, from near solar down to about [Fe/H] ⋍ −2.3. However there are field stars with abundances significantly lower than −2.3 (eg Bond, 1980); this implies that the clusters formed during the active phase of chemical enrichment, with cluster formation beginning at a time when the enrichment processes were already well under way.


2010 ◽  
Vol 6 (S270) ◽  
pp. 381-384
Author(s):  
Oleg Y. Gnedin

AbstractModern hydrodynamic simulations of galaxy formation are able to predict accurately the rates and locations of the assembly of giant molecular clouds in early galaxies. These clouds could host star clusters with the masses and sizes of real globular clusters. I describe current state-of-the-art simulations aimed at understanding the origin of the cluster mass function and metallicity distribution. Metallicity bimodality of globular cluster systems appears to be a natural outcome of hierarchical formation and gradually declining fraction of cold gas in galaxies. Globular cluster formation was most prominent at redshifts z > 3, when massive star clusters may have contributed as much as 20% of all galactic star formation.


2019 ◽  
Vol 14 (S351) ◽  
pp. 3-12
Author(s):  
William E. Harris

AbstractOn observational grounds we now know a huge amount about the characteristics of massive star clusters in galaxies of all types, from the smallest dwarfs to the most massive giants and even into the Intracluster Medium. The old globular clusters (GCs) in particular exhibit a high degree of uniformity across all these environments in their physical properties including scale size, luminosity distribution, metallicity distribution, and age. As survivors of a long period of dynamical evolution, they are “unusual, but not special” among star clusters.The past few years have seen major advances in theoretical modelling that are starting to reveal how these massive star clusters formed in the early stages of galaxy evolution. Several suites of models point to their emergence in GMCs (Giant Molecular Clouds), which provide the turbulent big reservoirs of gas within which star clusters can be built. At cluster masses ∼105M⊙ and above, clusters form hierarchically through a nearly equal combination of direct gas accretion, and mergers with smaller clusters scattered throughout the GMC. GCs and YMCs (young massive clusters) in this high mass range should therefore be composite systems right from birth. To make such high-mass clusters, host GMCs of ∼107M⊙ are needed, and these are most commonly found in galaxies at redshifts z ≳ 2.


Author(s):  
Duncan A. Forbes ◽  
Nate Bastian ◽  
Mark Gieles ◽  
Robert A. Crain ◽  
J. M. Diederik Kruijssen ◽  
...  

We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z ∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.


2019 ◽  
Vol 490 (1) ◽  
pp. 491-501 ◽  
Author(s):  
Christopher Usher ◽  
Jean P Brodie ◽  
Duncan A Forbes ◽  
Aaron J Romanowsky ◽  
Jay Strader ◽  
...  

ABSTRACT Globular cluster ages provide both an important test of models of globular cluster formation and a powerful method to constrain the assembly history of galaxies. Unfortunately, measuring the ages of unresolved old stellar populations has proven challenging. Here, we present a novel technique that combines optical photometry with metallicity constraints from near-infrared spectroscopy in order to measure ages. After testing the method on globular clusters in the Milky Way and its satellite galaxies, we apply our technique to three massive early-type galaxies using data from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey. The three SLUGGS galaxies and the Milky Way show dramatically different globular cluster age and metallicity distributions, with NGC 1407 and the Milky Way showing mostly old globular clusters, while NGC 3115 and NGC 3377 show a range of globular ages. This diversity implies different galaxy formation histories and that the globular cluster optical colour–metallicity relation is not universal as is commonly assumed in globular cluster studies. We find a correlation between the median age of the metal-rich globular cluster populations and the age of the field star populations, in line with models where globular cluster formation is a natural outcome of high-intensity star formation.


2020 ◽  
Vol 494 (2) ◽  
pp. 1946-1955
Author(s):  
Christina K Gilligan ◽  
Brian Chaboyer ◽  
Jeffrey D Cummings ◽  
Dougal Mackey ◽  
Roger E Cohen ◽  
...  

ABSTRACT We examine four ancient Large Magellanic Cloud (LMC) globular clusters (GCs) for evidence of multiple stellar populations using the Advanced Camera for Surveys and Wide Field Camera 3 on the Hubble Space Telescope Programme GO-14164. NGC 1466, NGC 1841, and NGC 2257 all show evidence for a redder, secondary population along the main sequence. Reticulum does not show evidence for the presence of a redder population, but this GC has the least number of stars and Monte Carlo simulations indicate that the sample of main-sequence stars is too small to robustly infer whether a redder population exists in this cluster. The second, redder, population of the other three clusters constitutes $\sim 30-40{{\ \rm per\ cent}}$ of the total population along the main sequence. This brings the total number of ancient LMC GCs with known split or broadened main sequences to five. However, unlike for Hodge 11 and NGC 2210 (see Gilligan et al. (2019)), none of the clusters shows evidence for multiple populations in the horizontal branch. We also do not find evidence of a second population along the red giant branch.


2014 ◽  
Vol 10 (S312) ◽  
pp. 147-154
Author(s):  
J. M. Diederik Kruijssen

AbstractWe summarise the recent progress in understanding the formation and evolution of globular clusters (GCs) in the context of galaxy formation and evolution. It is discussed that an end-to-end model for GC formation and evolution should capture four different phases: (1) star and cluster formation in the high-pressure interstellar medium of high-redshift galaxies, (2) cluster disruption by tidal shocks in the gas-rich host galaxy disc, (3) cluster migration into the galaxy halo, and (4) the final evaporation-dominated evolution of GCs until the present day. Previous models have mainly focussed on phase 4. We present and discuss a simple model that includes each of these four steps – its key difference with respect to previous work is the simultaneous addition of the high-redshift formation and early evolution of young GCs, as well as their migration into galaxy haloes. The new model provides an excellent match to the observed GC mass spectrum and specific frequency, as well as the relations of GCs to the host dark matter halo mass and supermassive black hole mass. These results show (1) that the properties of present-day GCs are reproduced by assuming that they are the natural outcome of regular high-redshift star formation (i.e. they form according to same physical processes that govern massive cluster formation in the local Universe), and (2) that models only including GC evaporation strongly underestimate their integrated mass loss over a Hubble time.


2021 ◽  
Vol 502 (2) ◽  
pp. 2364-2380
Author(s):  
Nilanjan Banik ◽  
Jo Bovy ◽  
Gianfranco Bertone ◽  
Denis Erkal ◽  
T J L de Boer

ABSTRACT New data from the Gaia satellite, when combined with accurate photometry from the Pan-STARRS survey, allow us to accurately estimate the properties of the GD-1 stream. Here, we analyse the stellar density variations in the GD-1 stream and show that they cannot be due to known baryonic structures such as giant molecular clouds, globular clusters, or the Milky Way’s bar or spiral arms. A joint analysis of the GD-1 and Pal 5 streams instead requires a population of dark substructures with masses ≈107–$10^9 \ \rm {M}_{\odot }$. We infer a total abundance of dark subhaloes normalized to standard cold dark matter $n_{\rm sub}/n_{\rm sub, CDM} = 0.4 ^{+0.3}_{-0.2}$ (68 per cent), which corresponds to a mass fraction contained in the subhaloes $f_{\rm {sub}} = 0.14 ^{+0.11}_{-0.07} {{\ \rm per\ cent}}$, compatible with the predictions of hydrodynamical simulation of cold dark matter with baryons.


2015 ◽  
Vol 11 (S317) ◽  
pp. 97-103
Author(s):  
Eugenio Carretta

AbstractThis is a “biased” review because I will show recent evidence on the contribution of globular clusters (GCs) to the halo of our Galaxy seen through the lens of the new paradigm of multiple populations in GCs. I will show a few examples where the chemistry of multiple populations helps to answer hot questions including whether and how much GCs did contribute to the halo population, if we have evidence of the GCs-halo link, what are the strengths and weak points concerning this contribution.


Sign in / Sign up

Export Citation Format

Share Document