scholarly journals The Evolution of 3He, 4He and D in the Galaxy

2000 ◽  
Vol 198 ◽  
pp. 540-546 ◽  
Author(s):  
Cristina Chiappini ◽  
Francesca Matteucci

In this work we present the predictions of a modified version of the ‘two-infall model’ (Chiappini et al. 1997 - CMG) for the evolution of 3He, 4He and D in the solar vicinity, as well as their distributions along the Galactic disk. In particular, we show that when allowing for extra-mixing process in low mass stars (M < 2.5 M⊙), as predicted by Charbonnel and do Nascimento (1998), a long standing problem in chemical evolution is solved, namely: the overproduction of 3He by the chemical evolution models as compared to the observed values in the sun and in the interstellar medium. Moreover, we show that chemical evolution models can constrain the primordial value of the deuterium abundance and that a value of (D/H)p < 3 × 10—5 is suggested by the present model. Finally, adopting the primordial 4He abundance suggested by Viegas et al. (1999), we obtain a value for ΔY/ΔZ ≃ 2 and a better agreement with the solar 4He abundance.

1996 ◽  
Vol 169 ◽  
pp. 395-401
Author(s):  
M. Samland ◽  
G. Hensler

The stellar metallicity distribution of low-mass stars is one of the major touchstones for models describing the chemical evolution of our Galaxy. In contrast to the gaseous components, the abundances of the stellar components also reflect the temporal enrichment. Hence, the stellar metallicity distribution is a stringent test for evolutionary models of galaxies.


1977 ◽  
Vol 45 ◽  
pp. 79-101
Author(s):  
Jean Audouze

AbstractFrom observations of the galactic center using various techniques radioastronomy, millimeter waves (molecules) – infrared and gamma rays, the interstellar matter of this region* appears to have been strongly processed into stars : the gas density is much lower than in the solar neighbourhood. From CO measurements one knows that there are many molecular clouds such as SgrB2 where stars are forming now. From IR measurements, there are some indication that low mass stars are relatively more numerous in such regions than in the external regions of the galaxy. Finally the heavy element abundances show three important features (i) the possibility of strong enhancements in elements such as N and in a less extent 0 and Ne (the so called abundance gradients), (ii) Some specific enhancements of isotopes such43C,44N and also47O relative to42C,45N and43O (iii) Deuterium seems to have a lower abundance than in other parts of the galaxy such as the solar neighbourhood. Simple models of chemical evolution have been designed to account for such features and are rewiewed here.


1983 ◽  
Vol 103 ◽  
pp. 463-472 ◽  
Author(s):  
Alfonso Serrano

Tinsley (1978) has done an excellent review that illustrates the methods and concepts that can be developed to assess the effects of planetary nebulae (PN) on the long-term history of the galaxy. Tinsley concluded that research in PN could put constraints on the past rate of star formation and provide information on chemical enrichment by low mass stars.


The amount of dark matter in the disc of the Galaxy at the solar position is determined by comparing the observed distributions of tracer stars with the predictions obtained from different assumptions of how the unseen matter is distributed. The major uncertainties, observational and theoretical, are estimated. For all the observed samples, typical models imply that about half of the mass in the solar vicinity must be in the form of unobserved matter. The volume density of unobserved material near the Sun is about 0.1 M pc -3 ; the corresponding column density is about 30 M pc -2 (1 pc ~ 30857 x 10 12 m). This, so far unseen, material must be in a disc with an exponential scale height of less than 0.7 kpc. All the existing observations are consistent with the unseen disc material being in the form of stars not massive enough to burn hydrogen. It is suggested that the unseen material that is required to hold up the rotation curves of galaxies and to satisfy the virial theorem for clusters of galaxies might also be in the form of low-mass stars.


2009 ◽  
Vol 5 (S268) ◽  
pp. 431-440
Author(s):  
Donatella Romano

AbstractThe uncertainties which still plague our understanding of the evolution of the light nuclides D, 3He and 4He in the Galaxy are described. Measurements of the local abundance of deuterium range over a factor of 3. The observed dispersion can be reconciled with the predictions on deuterium evolution from standard Galactic chemical evolution models, if the true local abundance of deuterium proves to be high, but not too high, and lower observed values are due to depletion onto dust grains. The nearly constancy of the 3He abundance with both time and position within the Galaxy implies a negligible production of this element in stars, at variance with predictions from standard stellar models which, however, do agree with the (few) measurements of 3He in planetary nebulae. Thermohaline mixing, inhibited by magnetic fields in a small fraction of low-mass stars, could in principle explain the complexity of the overall scenario. However, complete grids of stellar yields taking this mechanism into account are not available for use in chemical evolution models yet. Much effort has been devoted to unravel the origin of the extreme helium-rich stars which seem to inhabit the most massive Galactic globular clusters. Yet, the issue of 4He evolution is far from being fully settled even in the disc of the Milky Way.


2019 ◽  
Vol 15 (S354) ◽  
pp. 384-391
Author(s):  
L. Doyle ◽  
G. Ramsay ◽  
J. G. Doyle ◽  
P. F. Wyper ◽  
E. Scullion ◽  
...  

AbstractWe report on our project to study the activity in both the Sun and low mass stars. Utilising high cadence, Hα observations of a filament eruption made using the CRISP spectropolarimeter mounted on the Swedish Solar Telescope has allowed us to determine 3D velocity maps of the event. To gain insight into the physical mechanism which drives the event we have qualitatively compared our observation to a 3D MHD reconnection model. Solar-type and low mass stars can be highly active producing flares with energies exceeding erg. Using K2 and TESS data we find no correlation between the number of flares and the rotation phase which is surprising. Our solar flare model can be used to aid our understanding of the origin of flares in other stars. By scaling up our solar model to replicate observed stellar flare energies, we investigate the conditions needed for such high energy flares.


1994 ◽  
Vol 146 ◽  
pp. 61-70
Author(s):  
James Liebert

The term dwarf stars identifies objects of small radius in the Hertzsprung-Russell (H-R) Diagram, but encompasses more than one phase of stellar evolution. The M dwarfs (type dM) populate the main sequence at the low mass end; these are the coolest core hydrogen-burning stars. They belong generally to the Galactic disk, or Population I, have relatively small space motions with respect to the Sun, and have similar metallicities to the Sun (although perhaps only within a factor of several). In particular, this means that the abundance of oxygen is always greater than that of carbon. The M subdwarfs (sdM) are the Population II counterparts, showing low metallicities and high space motions. Because they have smaller radii, they define a main sequence at lower luminosity than the M dwarfs for a given temperature. Hence the term subdwarf.


1977 ◽  
Vol 45 ◽  
pp. 149-159 ◽  
Author(s):  
Manuel Peimbert

Abstract.Observational evidence related to the chemical composition across the disk of the Galaxy is reviewed. The H2density distribution derived for the Galaxy is poorly known, consequently it is still not possible to compare theoretical models of the chemical evolution of the Galaxy with the gaseous density distribution. The H2density distribution is particularly sensitive to the fraction of carbon atoms embedded in CO molecules and to the possible presence of a C/H abundance gradient.


2017 ◽  
Vol 600 ◽  
pp. A13 ◽  
Author(s):  
N. Astudillo-Defru ◽  
X. Delfosse ◽  
X. Bonfils ◽  
T. Forveille ◽  
C. Lovis ◽  
...  

Context. Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres, and thus increase the observed flux in the Ca ii H and K doublet. Starting with the historical Mount Wilson monitoring program, these two spectral lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period (Prot) and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca ii emission is traditionally quantified through the R'HK-index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M dwarfs – the most numerous stars of the Galaxy – were left out of these analyses and no calibration of their Ca ii H and K emission to an R'HK exists to date. Aims. We set out to characterize the magnetic activity of the low- and very-low-mass stars by providing a calibration of the R'HK-index that extends to the realm of M dwarfs, and by evaluating the relationship between R'HK and the rotation period. Methods. We calibrated the bolometric and photospheric factors for M dwarfs to properly transform the S-index (which compares the flux in the Ca ii H and K lines to a close spectral continuum) into the R'HK. We monitored magnetic activity through the Ca ii H and K emission lines in the HARPS M dwarf sample. Results. The R'HK index, like the fractional X-ray luminosity LX/Lbol, shows a saturated correlation with rotation, with saturation setting in around a ten days rotation period. Above that period, slower rotators show weaker Ca ii activity, as expected. Under that period, the R'HK index saturates to approximately 10-4. Stellar mass modulates the Ca ii activity, with R'HK showing a constant basal activity above 0.6 M⊙ and then decreasing with mass between 0.6 M⊙ and the fully-convective limit of 0.35 M⊙. Short-term variability of the activity correlates with its mean level and stars with higher R'HK indexes show larger R'HK variability, as previously observed for earlier spectral types.


In most discussions of the formation of the Solar System, the early Sun is assumed to have possessed the bulk of the angular momentum of the system, and a closely surrounding disc of gas was spun out, which, through magnetic coupling, acquired a progressively larger proportion of the total angular momentum. There are difficulties with this model in accounting for the inclined axis of the Sun, the magnitude of the magnetic coupling required, and the nucleogenetic variations recently observed in the Solar System. Another possibility exists, namely that of a slowly contracting disc of interstellar material, leading to the formation of both a central star and a protoplanetary disc. In this model one can better account for the tilt of the Sun’s axis and the lack of mixing necessary to account for the nucleogenetic evidence. The low angular momentum of the Sun and of other low mass stars is then seen as resulting from a slow build-up as a degenerate dwarf, acquiring orbital material at a low specific angular momentum. When the internal temperature reaches the threshold for hydrogen burning, the star expands to the Main Sequence and is now a slow rotator. More massive stars would spin quickly because they had to acquire orbiting material after the expansion, and therefore at a high specific angular momentum. A process of gradual inward spiralling may also allow materials derived from different sources to accumulate into solid bodies, and be placed on a great variety of orbits in the outer reaches of the system, setting up the cometary cloud of uneven nucleogenetic composition.


Sign in / Sign up

Export Citation Format

Share Document