The vigorous development of data driven astronomy education and public outreach (DAEPO)

2019 ◽  
Vol 15 (S367) ◽  
pp. 199-209
Author(s):  
Shanshan Li ◽  
Chenzhou Cui ◽  
Cuilan Qiao ◽  
Dongwei Fan ◽  
Changhua Li ◽  
...  

AbstractAstronomy education and public outreach (EPO) is one of the important part of the future development of astronomy. During the past few years, as the rapid evolution of Internet and the continuous change of policy, the breeding environment of science EPO keep improving and the number of related projects show a booming trend. EPO is no longer just a matter of to teachers and science educators but also attracted the attention of professional astronomers. Among all activates of astronomy EPO, the data driven astronomy education and public outreach (abbreviated as DAEPO) is special and important. It benefits from the development of Big Data and Internet technology and is full of flexibility and diversity. We will present the history, definition, best practices and prospective development of DAEPO for better understanding this active field.

2015 ◽  
Vol 11 (A29A) ◽  
pp. 115-117
Author(s):  
R. Chris Smith ◽  
Pedro Sanhueza ◽  
Malcolm G. Smith

AbstractThe AURA Observatory site in northern Chile, which includes Cerro Tololo and Cerro Pachon, has been operational for over 50 years now, facing a variety of challenges to its long-term future. The site now hosts over 20 operational telescopes, ranging from small projects with 0.4m telescopes to the Blanco 4m, the SOAR 4.1m, and the 8m Gemini-South telescopes. In addition, we have recently begun the construction of the Large Synoptic Survey Telescope (LSST) on the summit of Cerro Pachon. We summarize our efforts over the past 20-30 years to highlight the importance of site protection through education and public outreach as well as through more recent promotion of IDA certifications in the region and support for the World Heritage initiatives described by others in this conference.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
John H. Graham

Best practices in studies of developmental instability, as measured by fluctuating asymmetry, have developed over the past 60 years. Unfortunately, they are haphazardly applied in many of the papers submitted for review. Most often, research designs suffer from lack of randomization, inadequate replication, poor attention to size scaling, lack of attention to measurement error, and unrecognized mixtures of additive and multiplicative errors. Here, I summarize a set of best practices, especially in studies that examine the effects of environmental stress on fluctuating asymmetry.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Lydia Moussa ◽  
Shalom Benrimoj ◽  
Katarzyna Musial ◽  
Simon Kocbek ◽  
Victoria Garcia-Cardenas

Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change.


Author(s):  
T M Lawlor

Abstract We present stellar evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PN) phase for models of initial mass 1.2 M⊙ and 2.0 M⊙ that experience a Late Thermal Pulse (LTP), a helium shell flash that occurs following the AGB and causes a rapid looping evolution between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, V839 Ara (SAO 244567). The central star has been observed to be rapidly evolving (heating) over the last 50 to 60 years and rapidly dimming over the past 20–30 years. It has been reported to belong to the youngest known planetary nebula, now rapidly fading in brightness. In this paper we show that the observed timescales, sudden dimming, and increasing Log(g), can all be explained by LTP models of a specific variety. We provide a possible explanation for the nebular ionization, the 1980’s sudden mass loss episode, the sudden decline in mass loss, and the nebular recombination and fading.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giacomo Baggio ◽  
Danielle S. Bassett ◽  
Fabio Pasqualetti

AbstractOur ability to manipulate the behavior of complex networks depends on the design of efficient control algorithms and, critically, on the availability of an accurate and tractable model of the network dynamics. While the design of control algorithms for network systems has seen notable advances in the past few years, knowledge of the network dynamics is a ubiquitous assumption that is difficult to satisfy in practice. In this paper we overcome this limitation, and develop a data-driven framework to control a complex network optimally and without any knowledge of the network dynamics. Our optimal controls are constructed using a finite set of data, where the unknown network is stimulated with arbitrary and possibly random inputs. Although our controls are provably correct for networks with linear dynamics, we also characterize their performance against noisy data and in the presence of nonlinear dynamics, as they arise in power grid and brain networks.


2021 ◽  
Vol 73 (07) ◽  
pp. 64-64
Author(s):  
Nigel Jenvey

Have you noticed the change in the oil and gas industry over the past year with its engagement in carbon management, decarbonization, and net-zero-emissions targets? Policy support and technology advances in alternative energies have delivered massive cost reduction in renewables more quickly, and to a greater degree, than expected. Over the past few years, more of the world’s capital has been spent on electricity than oil and gas sup-ply, and more than half of all new energy-generation capacity is now renewable. Some elements of society, therefore, have suggested that this is the beginning of the end for the fossil-fuel sector and call for investors to turn away from oil and gas and “leave it in the ground.” In more than a century of almost continuous change, however, the oil and gas industry has a long track record of innovative thinking, creative solutions, and different business models. SPE papers and events that covered decarbonization during the past year show that a wide variety of solutions already exist that avoid, reduce, replace, offset, or sequester greenhouse gas (GHG) emissions. It is clear, therefore, that decarbonization technologies will now be as important as 4D seismic, horizontal wells, and hydraulic fracturing. That is why we now bring you this inaugural Technology Focus feature dedicated to decarbonization. The experience and capability of the entire JPT community in decarbonization is critical. Please enjoy the following summary of three selected papers on the role of natural gas in fuel-switching; carbon capture, use, and storage (CCUS); and hydrogen technologies that deliver the dual challenge of providing more energy with less GHG emission. There are many ways to engage in the SPE decarbonization efforts in the remainder of 2021. Regional events have addressed CCUS, hydrogen, geothermal, and methane. There is also the new SPE Gaia sustainability program to enable and empower all members who wish to engage in the alignment of the future of energy with sustainable development. The Gaia program has an on-demand library of materials, including an existing series on methane, and upcoming similar events on other energy transition, natural capital and regeneration, and social responsibility priorities. Get involved through your SPE section or chapter or contact your regional Gaia liaison to find out what Gaia programming you can support or lead at www.spe.org/en/gaia.


Sign in / Sign up

Export Citation Format

Share Document