The effect of heifer rearing regime on body size and milk production during the first lactation

2000 ◽  
Vol 2000 ◽  
pp. 13-13 ◽  
Author(s):  
A.F. Carson ◽  
L.E.R. Dawson ◽  
F.J. Gordon

The UK dairy industry has entered a period of rapid increase in cow genetic merit. Feeding and management during the rearing period will influence the extent to which the genetic merit of these animals is realised. Current systems for rearing dairy herd replacements are based on research undertaken in the 1960's and 1970's with animals of lower genetic merit. High genetic merit Holstein Friesian animals have an increased live weight and frame size at maturity compared with their medium merit contemporaries, which may have implications for the optimum weight at first calving. The aim of this study was to determine the effect of rearing regime, in terms of diet offered and target calving weight, on first lactation performance of high genetic merit heifers over a range of milk production systems.

2004 ◽  
Vol 78 (2) ◽  
pp. 345-354 ◽  
Author(s):  
H. C. F. Wicks ◽  
A. F. Carson ◽  
M. A. McCoy ◽  
C. S. Mayne

AbstractTwenty-nine Holstein-Friesian and 20 Norwegian dairy herd replacements were used to investigate the effect of habituating heifers to the milking parlour environment prior to calving on subsequent lactational performance. The heifers commenced the study at 3 weeks prior to calving when they were allocated on the basis of breed, genetic merit and live weight to either a habituation or no habituation (control) treatment. Heifers were housed together in cubicle accommodation with grass silage offered ad libitum along with 1 kg of concentrates per head per day offered in the feeding passage (control treatment) or in the food managers in the milking parlour (habituation treatment). Animals in the habituation treatment were exposed to the full milking parlour routine once daily (afternoon milking) in a 20-point rotary herringbone parlour. Holstein-Friesian heifers averaged 2.6 kg/day more milk than the Norwegian replacements. Holstein-Friesian heifers also had higher fat and protein yields than Norwegian heifers, however they also lost more body condition during the first 3 months of lactation. Habituated heifers yielded on average 1.3 kg/day more milk (P < 0.001) than the control group of heifers over the first 100 days of lactation (26.7 v. 25.4 (s.e.d. 0.38) kg/day), with the difference being greatest in the first 2 to 3 weeks of lactation. In early lactation, animals on the habituation treatment lost more live weight (0.16 v. 0.02 (s.e.d. 0.061) kg/day) (P < 0.05) and body condition than those on the control treatment. Duration of milking was longer (P < 0.001) (378.4 v. 340.5 (s.e.d. 6.53) s) and milk flow rate slower (P < 0.001) (2.20 v. 2.46 (s.e.d. 0.041) kg/min) respectively for the habituation compared with control group. Somatic cell counts (SCC) were lower (P < 0.001) for habituation group (1.66 v. 1.79 (s.e.d. 0.037) log10SCC per ml), but there was no significant treatment effect on locomotion scores. Reproductive performance was lower for habituated heifers, with increased intervals to conception (P < 0.05) (102 v. 83 (s.e.d. 9.22) days). Habituating heifers to the milking parlour environment prior to calving increased milk production but appeared to have some detrimental effects on reproductive performance.


2003 ◽  
Vol 2003 ◽  
pp. 3-3
Author(s):  
S.M. Woods ◽  
A.F. Carson ◽  
A.R.G. Wylie ◽  
J.D. McEvoy

Nutrition during the rearing period has significant effects on subsequent milk production and reproductive performance of dairy herd replacements. Carson et al. (2002) reported that heifers reared to calve down at 620 kg, in contrast to 540 kg live weight, produced 11% more milk, lost more weight and body condition score (BCS) post-calving and had a 30 day longer calving interval. This suggests that a higher BCS at calving and/or a greater rate of BCS loss during lactation appear to be correlated with poorer fertility. The objectives of this experiment were to investigate the effect of (1) diet composition during the rearing period and (2) live weight at first calving on body size and condition score changes during the first lactation and to assess linkages with metabolic hormone concentrations.


1995 ◽  
Vol 19 ◽  
pp. 67-77 ◽  
Author(s):  
C. S. Mayne ◽  
F. J. Gordon

AbstractMajor increases in the rate of genetic improvement in the dairy herd have been obtained in the United Kingdom and the Republic of Ireland since the mid 1980s. The implications of increases in genetic merit and the possible consequences of genotype X nutrition interactions on the efficiency of milk production systems are reviewed. The majority of previous studies with dairy cattle of moderate genetic merit suggest little evidence of genotype X nutrition interactions across a range of nutritional and management regimes, with higher milk production of high merit cows largely accounted for by effects on nutrient partitioning. However, more recent results suggest a significant re-ranking of sires when evaluated under either intensive feeding systems or in systems with a high reliance on grazed pasture.Under intensive feeding systems higher animal performance has been obtained with high merit cows across a range of concentrate inputs and feeding systems. However, recent results from the Langhill studies provide the first tentative evidence of a genotype X nutrition interaction, with significantly different regression coefficients between genetic merit (as assessed by pedigree index) and milk production, under either low or high forage diets. The implications of these results are that high merit cows may be unable to express their full genetic potential for milk production when offered a high forage (or low energy density) diet. Consequently, the influence of other factors which have a major effect on voluntary food intake, and hence nutrient intake, e.g. forage dry matter content and forage digestibility, may be relatively more important with high genetic merit dairy cows.It is concluded that higher milk production in high merit cows is largely attributable to variation in partitioning of nutrients, rather than to changes in food intake or digestive efficiency. Consequently, it is important fully to assess the animal performance and welfare implications of maintaining high genetic merit dairy cows under systems which may limit nutrient intake, e.g. under high forage regimes involving a high reliance on grazed or conserved forage. The major challenge for research and dairy herd management is to increase food intake with grass- and/or grass silage-based diets, thereby reducing the need for high levels of concentrates input to prevent excessive body condition loss with high genetic merit dairy cows in early lactation.


2000 ◽  
Vol 2000 ◽  
pp. 10-10 ◽  
Author(s):  
D.E. Beever ◽  
A.J. Hattan ◽  
S B Cammell ◽  
D.J. Humphries ◽  
A K Jones

Significant increases in genetic merit for milk production in the UK dairy herd have led to high and persistent milk yields becoming relatively common. Data relating this level of performance to the extent of the energy deficit in early lactation, possible impact on milk quality and the contribution of mobilised energy to milk production are relatively scarce. The aim of this study was to compare lactational performance in high- (HYC) and average- (AYC) yielding cows and to reconcile changes in body status (liveweight and condition score) of HYC with associated measurements of energy depletion and repletion.


2002 ◽  
Vol 2002 ◽  
pp. 75-75
Author(s):  
A.F. Carson ◽  
L.E.R. Dawson ◽  
A.R.G Wylie ◽  
F.J. Gordon

Feeding and management during the rearing period has a major effect on the subsequent performance and welfare of dairy herd replacements. Recently, Carson et al. (2000) found that increasing the live weight of high genetic merit Holstein Friesian heifers from 540 to 620 kg at first calving increased first lactation milk yield by 11%. Mammary growth is a major determinant of milk yield capacity and longevity of lactation and may be the primary driver behind the observed increases in milk production with larger heifers. The first objective of the current study was to evaluate the effects of rearing regime, in terms of diet offered and target weight at 18 months of age, on mammary gland development of high genetic merit Holstein-Friesian heifers. The second objective of this study was to investigate the effect of rearing regime on solear haemorrhages and heel erosions in Holstein-Friesian heifers.


2002 ◽  
Vol 74 (3) ◽  
pp. 553-565 ◽  
Author(s):  
A. F. Carson ◽  
L. E. R. Dawson ◽  
M. A. McCoy ◽  
D. J. Kilpatrick ◽  
F. J. Gordon

AbstractOne hundred and thirteen high genetic merit Holstein-Friesian heifers were used in a study to determine the effect of rearing regime, in terms of diet offered and target calving weight, on body size, reproductive performance and milk production in high genetic merit heifers. Eighty of the heifers were supplied from 11 commercial farms, the remainder were supplied from the herd at the Agricultural Research Institute of Northern Ireland. The heifers commenced the experiment at 7 weeks of age when they were allocated on the basis of source, live weight and genetic merit to one of four rearing regimes. The target weights at calving were 540 kg (treatment 1) and 620 kg (treatments 2, 3 and 4). Treatment 1 heifers were offered grass silage-based diets during the winter and grass-based diets during the summer. Treatment 2 heifers were offered the same forage base plus additional concentrate supplementation. Treatment 3 heifers were offered a straw/concentrate diet during the winter and grass-based diets during the summer. Treatment 4 heifers received the same diets as treatment 3, except for the first summer period when they remained housed and were offered a straw/concentrate diet. The heifers were mated at 14 months of age and were returned to the 11 source farms one month prior to calving. Heifers reared on treatment 1 had a lower withers height (P < 0·001) and were of a lower condition score (P < 0·001) before calving than heifers reared on treatments 2, 3 and 4. During early lactation (3 months post calving) heifers reared on treatment 1 lost less weight and condition score than the heifers reared on the other treatments. Thus at the end of the first lactation live weights did not differ significantly between the treatments. However, body length remained shorter (P < 0·01) in treatment 1 compared with treatments 2, 3 and 4. First lactation milk yield (305 days) was lower for heifers reared on treatment 1 (7222 l) compared with heifers reared on treatment 2 (8020 l) (P < 0·01), 3 (7956 l) (P < 0·01) and 4 (7901 l) (P < 0·05). Similarly, milk fat plus protein yield was lower (P < 0·05) for heifers reared on treatment 1 (511 kg) compared with treatments 2 (544 kg), 3 (544 kg) and 4 (554 kg). The interval from calving to first recorded oestrus was shorter in treatment 1 compared with treatments 2 and 3 (P < 0·05). There was a tendency (P < 0·10) for heifers reared on treatment 1 to have a shorter calving interval (394 days) compared with treatments 2 (426 days), 3 (435 days) and 4 (458 days). In conclusion increasing the live weight of Holstein-Friesian heifers at first calving from 540 to 620 kg pre-calving increased milk yield proportionally by 0·11 but tended to increase the calving interval. Diet type during the rearing period had no effect on milk fat plus protein yield or reproductive performance.


2004 ◽  
Vol 78 (3) ◽  
pp. 497-509 ◽  
Author(s):  
A. F. Carson ◽  
L. E. R. Dawson ◽  
A. R. G. Wylie ◽  
F. J. Gordon

AbstractOne hundred and eight high genetic merit Holstein-Friesian heifers were used to determine the effects of rearing regime on the development of the mammary gland and claw abnormalities. Heifers were allocated to one of four rearing regimes at 7 weeks of age and slaughtered at 18 (s.d.0.7) months of age; mating commenced at 14 months of age. Treatment 1 heifers were reared to calve at 540 kg and treatments 2, 3 and 4 heifers reared to calve at 620 kg. Treatment 1 and 2 heifers were offered grass silage-based diets during the winter and grass-based diets during the summer; treatment 2 heifers received additional concentrates. Treatment 3 heifers were offered a straw/concentrate diet during the winter and a grass-based diet during the summer. Treatment 4 heifers received the same winter diets as treatment 3 but were housed and offered a straw/concentrate diet in summer. Increasing plane of nutrition increased the weight of dissected udder fat (P < 0.01), but had no effect on the weight or chemical composition of dissected udder parenchyma. Offering straw- compared with silage-based diets reduced fat deposition in the udder (P < 0.01) and increased the proportion of parenchyma in the udder (P < 0.01). Keeping heifers housed during the first summer and offering straw-based diets relative to those turned out to grass had no effect on weight of fat although there was a tendency towards a reduction in the proportion of parenchyma in the udder (P < 0.06). Heifers reared on a low plane of nutrition had lower values for heel height (P < 0.001), lateral claw length (P < 0.001) and heel erosion scores (P < 0.01). A higher plane of nutrition also increased live weight/sole area although this was only significantly higher for treatment 3 (P < 0.05) compared with treatment 1 heifers. Housing heifers in the first summer increased the incidence of feet lesions in the white line area and solear area relative to turning heifers out to grass in the first summer (P < 0.05).


1999 ◽  
Vol 1999 ◽  
pp. 76-76
Author(s):  
C.P. Ferris ◽  
F.J. Gordon ◽  
D.C. Patterson ◽  
C.S. Mayne

In a previous short term study, Ferris et al. (1997) demonstrated that similar levels of nutrient intake and animal performance could be obtained by either increasing silage feed value and reducing concentrate feed level, or by reducing silage feed value and increasing concentrate feed level. The principles established in this study were incorporated into this trial to examine two systems of milk production over a full lactation, including both the winter and grazing periods.Forty high genetic merit dairy cows (PTA95 fat + protein = 38.2 kg), in their second or subsequent lactation, were used in a continuous design full lactation study. Animals had a mean calving date of 1 November and were allocated to one of two systems of milk production, HF or HC, within 36 hours of calving. During the winter, animals on system HF were offered a silage with high feed value characteristics, supplemented with 5.5 kg of concentrate (crude protein concentration of 280 g/kg DM) through an out-of-parlour feeding system.


2000 ◽  
Vol 70 (2) ◽  
pp. 349-362 ◽  
Author(s):  
A.F. Carson ◽  
A.R.G. Wylie ◽  
J.D.G. McEvoy ◽  
M. McCoy ◽  
L.E.R. Dawson

AbstractSeventy high genetic merit Holstein heifers were used in two experiments to investigate (1) the effects of plane of nutrition and diet type during the pre-pubertal period and (2) the effects of plane of nutrition during the post-pubertal period on metabolic hormone concentrations, growth and milk production. In experiment 1, treatment 1 and 2 heifers were given food to achieve a live-weight gain of 0·70 and 0·95 kg/day from 3 to 10 months of age on a grass silage based diet, while treatment 3 heifers were given food to achieve 0·95 kg/day on a barley straw/concentrate diet. During the pre-pubertal period, heifers reared on treatment 1 had significantly higher growth hormone(GH) concentrations (ng/ml per 1 h) than heifers reared on treatment 2 (P < 0·01) and had significantly lower insulin concentrations than heifers reared on treatment 3 (P < 0·01). Heifers reared on treatment 1 had significantly lower insulin-like growth factor 1 (IGF-1) concentrations than those reared on treatment 3 (P < 0·01). At 10 months of age heifers reared on treatment 1 were of lower condition score (P < 0·01) than those on treatment 2 and had a smaller heart girth diameter (P < 0·01) than those on treatments 2 and 3. During the first lactation, milk yield and composition produced by the heifers was not significantly affected by treatment. In experiment 2, treatment A heifers were given, from 14 to 24 months of age, a low plane of nutrition to allow a live-weight gain of 0·65 kg/day on a grass silage and grass based diet during the winter and summer periods respectively. Treatment B heifers were kept on a high plane of nutrition to allow a live-weight gain of 0·90 kg/day on the same forage along with concentrate supplementation. During the rearing period, GH and IGF-1 concentrations were not significantly affected by treatment. Treatment A heifers weighed less before calving (P < 0·05), had a lower condition score (P < 0·01), and had a smaller heart girth diameter (P < 0·01) than those on treatment B. During the first 10 weeks of lactation, heifers on treatment A had a higher silage dry matter intake and lost less weight (P < 0·05) than those on treatment B, however, by 20 weeks of lactation these effects had disappeared. Milk yield and composition during the first lactation were not significantly affected by treatment. Overall, the findings of experiments 1 and 2 did not show any beneficial effects of higher weights at first calving in high genetic merit Holsteins and therefore indicate that accelerated growth in the pre- or post-pubertal period may not be required.


Sign in / Sign up

Export Citation Format

Share Document