scholarly journals PSXII-36 Modelling in vitro gas production kinetics of fresh alfalfa incubated with inocula from five ruminant species

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 427-428
Author(s):  
Richard R Lobo ◽  
Marcos I Marcondes ◽  
Paulo H Rodrigues ◽  
Antonio Faciola ◽  
Rafael Pinheiro ◽  
...  

Abstract The objective was to identify the non-linear model with the best fit for cumulative gas production from fermentation of fresh alfalfa, with or without tannin extract, incubated with rumen fluid from five different species of ruminants. Fifteen animals (Taurine and Zebuine cattle, water buffaloes, sheep and goats) were used as inoculum donors. During incubation, 500 mg of fresh alfalfa, with or without 150 mg of acacia tannin extract, were used as substrate in the semi-automated gas production technique. Experimental design was completely randomized in a factorial arrangement with five inoculum sources (ruminant specie) and two treatments (with or without tannin extract). We used the PROC NLMIXED to fit ten mathematical models and the best one was chosen based on the lowest AIC and MSE and highest R2. Lastly, the best model was validated using the cross validation technique. The model with the best fit was the Groot model (AIC 1255.5; MSE 174.01; R2 0.9496) comparatively to others methods and the most part of error is from random effect (97.7%). Tannin inclusion reduced parameters potential gas production (A) and time to produce half of total gas production (T1) (P > 0.0001); however, no difference was observed on the gas production rate (k) (P > 0.1181). When no tannin was added, differences between the two cattle category were observed. Comparing water buffaloes’ inoculum with Taurine inoculum, no differences were observed for “A,” however, this parameter differed among water buffaloes and Zebuine cattle. In conclusion, Groot model had the best fit on in vitro bioassay with alfalfa substrate and treated or not with tannin extract. The tannin extract reduced the potential gas production; however, it did not change the gas production rate. For evaluation of alfalfa by cumulative gas production technique, the potential gas production was changed by using different animal categories as inoculum donor.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 466-466
Author(s):  
Angela R Boyer ◽  
Yun Jiang ◽  
Alon Blakeney ◽  
Dennis Nuzback ◽  
Brooke Humphrey ◽  
...  

Abstract Vistore® minerals are hydroxychloride minerals that feature high metal content and improved bioavailability. This study was conducted to compare different sources of zinc (Zn) on in vitro rumen fermentation parameters. Three ruminally-cannulated Jersey heifers were adapted to a lactation diet for two weeks before used as donors. Three sources of Zn were tested at 20 ppm: No supplemental Zn (CON), ZnSO4, Vistore Zn, and another Zn hydroxychloride (Vistore-competitor). The concentration of Zn in this study was selected from a titration study (0 to 40 ppm ZnSO4) to identify the minimum concentration of ZnSo4 affecting rumen fermentation. The lactation diet (TMR) was dried and ground to 1mm and used as substrate. Rumen fluid was collected two hours after feeding. Substrate (0.5 g) was inoculated with 100 mL of 3:1 McDougall’s buffer: ruminal flued mixture at 39ºC for 24 h. Each treatment was run in triplicate and in three runs. Data were analyzed with R 3.0. The model included fixed effect of treatment and random effect of run. ZnSO4 reduced (P < 0.05) maximum gas production, DMD (54 vs. 55.9%) and cellulose (27.5 and 40.7%) digestibility. acetate to propionate ration (2.20 vs. 2.24) and NH3-N concentration (6.0 vs. 7.0 mg/dL), increased (P < 0.05) propionate % (27.2 vs 26.7%) compared to control. Vistore had higher pH than control (6.44 vs. 6.40, P = 0.02) but did not affect other parameters compared to CON. Vistore-competitor reduced total VFA production compared to control, ZnSO4, and Vistore (94 vs. 102, 106 and 107 mM, respectively, P = 0.01) but did not affect other parameters. In general, Vistore Zn maintained in vitro ruminal fermentation and digestibility, while ZnSO4 had negative effects on both fermentation and digestibility and Vistore-competitor reduced total VFAs. Results indicate hydroxychloride minerals may stabilize rumen parameters versus sulfate sources but different hydroxychloride sources appear to influence rumen parameters differently.


2009 ◽  
Vol 2009 ◽  
pp. 190-190
Author(s):  
A Taghizadeh ◽  
M Besharati

Anaerobic digestion of carbohydrates by ruminal microbes produces short chain fatty acids (SCFA), CO2, CH4, and traces of H2; hence, measurement of gas production in vitro can be used to study the rate and extent of digestion of feedstuffs (Hungate, 1966). When a feedstuff is incubated with buffered rumen fluid in vitro, the carbohydrates are fermented to SCFA, gases mainly CO2 and CH4 and microbial cells. Gas production is basically the result of fermentation of carbohydrates to acetate, propionate and butyrate (Wolin, 1960; Beuvink and Spoelstra, 1992; Blummel and Ørskov, 1993). High correlations between gas production and NDF disappearance, r2 = 0.99 (Pell and Schofield, 1993) or gas production and DM disappearance, r2 = 0.95 (Prasad et al., 1994) have been reported. In vitro techniques that estimate digestion kinetics indirectly by measuring gas production are a more viable option than other in vitro methods. Gas production technology allows for a more usable collection of digestion kinetics data and has allowed for a growing body of knowledge that is directly applicable to the feeding programs that are in daily practical field use. The range of data that can be acquired is broad and will no doubt grow over time. One of the most challenging problems associated with using gas production methods is that the amount of gas produced varies with different molar proportions of SCFA. For example, a higher propionate concentration is associated with lower gas production because an extra carbon atom in propionate would otherwise have appeared as CO2 (Wolin, 1960). The object of this study was to evaluate the nutritional quality of noodle waste (NW), tomato pomace (TP) and apple pomace (AP) using the gas production technique.


1999 ◽  
Vol 1999 ◽  
pp. 154-154 ◽  
Author(s):  
S. Nagadi ◽  
M. Herrero ◽  
N.S Jessop

Food eaten by a ruminant firstly undergoes microbial fermentation within the rumen. Nutritionally important characteristics of the food are the rate and extent of fermentation of its carbohydrate fraction, which can both be estimated using the in vitro gas production technique. The single greatest source of uncontrolled variation in any in vitro rumen fermentation system is the rumen fluid; curves produced from gas production data were influenced significantly by the variation in microbial activity between days (Menke and Steingass, 1988; Beuvink et al, 1992). A more reliable measure of rumen fluid activity is needed. The objective of this study was to determine whether the frequency of sampling of rumen fluid affected the microbial activity and subsequent fermentation.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 62-63
Author(s):  
Miranda K Stotz ◽  
Sebastian E Mejia-Turcios ◽  
Andrea M Osorio ◽  
Nadira Espinoza ◽  
Philip M Urso ◽  
...  

Abstract Heat stress (HS) has been indicated to increase ruminal temperature, increase digestibility, and reduce ruminal pH of steers fed high concentrate diets. However, it is unclear if this effect is the result of greater fermentation rate, slower passage rate, or a combination. The effect of ruminal incubation temperature on substrate digestibility and rate of fermentation were evaluated. Four cannulated British-crossbreed steers (BW = 520 kg ± 30 kg) consuming an 87% (DM) concentrate diet were utilized as rumen fluid donors in a randomized complete block design with two incubation treatments (CON=39°C and HS=42°C). Within block, duplicate 125 mL serum bottles containing 200 mg of dietary substrate were inoculated with a 2:1 buffer:ruminal fluid mixture and incubated for 24 h to measure total gas production, fermentation rate, fermentation lag, pH, and ammonia-N concentration. In vitro organic matter digestibility (IVOMD) was measured separately in 100 mL centrifuge tubes. Data were analyzed using the MIXED procedure of SAS using the fixed effect of treatment and random effect of rumen fluid donor (block). There was no treatment effect on total gas production (P = 0.92) or fermentation rate (P = 0.11); however, HS began fermenting substrate sooner than CON (P < 0.005). There was a significant effect of treatment on IVOMD where HS was greater compared to CON (79.3 vs. 70.4%; P = 0.05). Final pH and relative pH change were not different (P ≥ 0.25) likely due to buffering capacity of the in vitro technique Ammonia-N concentration was greater for HS than CON (7.92 vs. 5.33 mM; P < 0.05) and may indicate a temperature effect on ruminal nitrogen availability.In conclusion, it does not appear that incubating at a greater temperature affected the fermentation rate but likely induced a change in fermentation kinetics, which may have contributed to the greater overall IVOMD


1996 ◽  
Vol 1996 ◽  
pp. 24-24
Author(s):  
Angela R. Moss ◽  
Karen C. O'Callaghan

There is a need to be able to measure the methane producing potential of a range of feedstuffs under different rumen conditions in order to predict more accurately the amount of methane produced per animal.In vitrotechniques using rumen fluid as an innoculum can be considered as models ofin vivorumen digestion and have been applied to estimate digestibility of feedstuffs. Thein vitrogas production technique (Menkeet. al., 1979) can be used successfully to estimate this but there has been limited attempts to use it to estimate the methane producing potential of feedstuffs. The objective was to assess the potential of the technique to do this.Three pure substrates, glucose (G), pectin (P) and cellulose (C) (lg) were pre-wetted in 94ml of medium D (Theodorouet. al., 1994). inoculated with strained rumen fluid (from wether sheep. 10ml) and incubated without agitation for 72h at 39°C.


2018 ◽  
Vol 15 (1) ◽  
pp. 217-227
Author(s):  
M. Edalati Nasab ◽  
A.A. Naserian ◽  
A.R. Vakili ◽  
A.M. Tahmasbi

The purpose of Present study was conducted to evaluate the effects of adding essential oils (Ziziphora clinopodioides and Mentha pulegium) on alfalfa silage on the rumen degradation parameters with in vitro technique. Present study was performed by utilizing an in vitro gas production method at various incubation intervals. Rumen fluid taken from three lactation, rumen-fistulated Holstein cows. The gas production rate was measured at standard times from 0, to 96 hours. The outcomes of this experiment show that Ziziphora clinopodioides and also Mentha pulegium essential oils had a positive influence on gas production rate. Silage content with Mentha pulegium had more decrease effects than Ziziphora clinopodioides in Gas production compare with control silage and it was significant. Gas production values (at 96 h incubation) in silage with no added essential oils, 30ML of Ziziphora clinopodioides and 30ML of Mentha pulegium were 68.82, 56.12 and 49.74, respectively. Compared with control, aerobic stability had a significant difference and it was developed in silage treated with essential oils. The findings of their findings showed that these essential oils could be used to increase the performance of ruminants. In addition, adding essential oils could change the rumen fermentation in ruminant, however, more research is still needed to proving this conclusion.


1997 ◽  
Vol 1997 ◽  
pp. 194-194
Author(s):  
Angela R. Moss ◽  
D. I. Givens

There is a need to be able to measure the methane producing potential of a range of feedstuffs under different rumen conditions in order to predict more accurately the amount of methane produced per animal. In vitro techniques using rumen fluid as an innoculum can be considered as models of in vivo rumen digestion and have been applied to estimate digestibility of feedstuffs. The in vitro gas production technique (Menke et. al, 1979) can be used successfully to estimate this but there have been limited attempts to use it to estimate the methane producing potential of feedstuffs. The objective was to assess the potential of the technique to do this.


Author(s):  
Yasemin Işık ◽  
Adem Kaya

In this study, in vitro gas production values, gas production parameters (a, b, a+b and c) and organic matter digestibilities (OMD), metabolizable energy (ME), net energy lactation (NEL) contents, chemical compositions and feed values of different physical processed (raw, soaked, boiled and roasted) common vetch seeds (Vicia sativa) were determined by in vitro gas production technique. Rumen fluid, used in this study, was obtained by probe from one Holstein bull (seven years old, average live weight= 650 kg) raised at Research and Application Farm of Agricultural Faculty Atatürk University. Raw and treated common vetch seeds were incubated for 2, 4, 6, 8, 12, 24, 48, 72 ve 96 hours for the determination of in vitro gas production values and gas production parameters in rumen fluid. It was observed significant differences among all of the common vetch seeds in terms of chemical composition (DM, CA, OM, CP, EE, NDF, ADF, ADL) values (P


2015 ◽  
pp. 4884-4894 ◽  
Author(s):  
Ahmet Tekeli ◽  
Gültekin Yıldız ◽  
Winfried Drochner ◽  
Herbert Steingass

ABSTRACTObjective. Determine the effect of some plant extract supplementation to Total Mixed Ration (TMR), concentrate and hay on volatile fatty acid (VFA) production at 8 and 24 hours (h) using in vitro gas production technique in cattle. Material and methods. Three fistulated Holstein dairy cows were used for rumen fluid collection for application of in vitro gas production technique. Four essence oils (T. vulgaris, O. vulgare, S. aromaticum, Z. officinale) were used as plant extracts. Results. Essence oil supplementations to the examined feed groups had significant effect only on C2/C3 VFA level at 8 h in all feed groups (p<0.05). C2/C3 VFA level at 8 h significantly increased in the groups with Oregano 25 ppm supplementation for TMR and concentrate and in the groups with Thymol 25 ppm supplementation for hay. C3 VFA level at 8 h significantly increased in the group that received Syzygium 200 ppm supplementation for hay. Different plant extracts supplemented to TMR, concentrate and hay significantly affected C2, C3, IC4, IC5, C5 and C2/C3 VFA levels at 24 h (p<0.05). Conclusions. The findings of the study indicate that moderate doses of plant extracts result in increased VFA levels in ruminants while higher doses demonstrate the opposite effect.


1998 ◽  
Vol 22 ◽  
pp. 89-91 ◽  
Author(s):  
C. Rymer ◽  
A. R. Moss ◽  
E. R. Deaville ◽  
D. I. Givens

When a food is ingested by a ruminant animal, the carbohydrate fraction of the food is fermented by the rumen micro-organisms to produce gas (predominantly carbon dioxide and methane) as well as volatile fatty acids (VFA). The gas production technique simulates this fermentation process and provides an estimate of both the rate and extent of fermentation. Comparing the gas production (GP) profiles of foods enables a comparison to be made of the fermentative characteristics of different foods. However, the technique uses a bicarbonate-based medium system with the rumen liquor. This complicates the GP profile because of the production of ‘indirect’ gas resulting from the reaction between the VFA and the bicarbonate ions.Beuvink and Spoelstra (1992) measured the volume of gas produced from buffered rumen fluid when known amounts of VFA were added and observed that 20·8 ml gas were released per mmol VFA. However, there is variation between laboratories in terms of the composition of the medium that is used. Even when the same medium is used, significant differences have been observed in the GP profile when different types of apparatus were employed (Rymer and Givens, 1997). Media are gassed with carbon dioxide before they are added to the gas production system and it is possible that the concentration of carbon dioxide dissolved in the medium varies between experiments. The objective of this experiment, therefore, was to determine whether the volume of indirect gas produced was affected by the composition of the medium, the addition of carbon dioxide, and the technique employed to measure gas production.


Sign in / Sign up

Export Citation Format

Share Document