Theoretical investigation of an air gap tuned superconducting triangular microstrip antenna

2013 ◽  
Vol 5 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Ouarda Barkat

An analytical model is presented to improve the performance of the equilateral triangular microstrip antenna (ETMA). An improved model is presented taking into account the insertion of an air gap between the substrate and the ground plane, and High Tc superconducting material (HTS) for the triangular patch. The full-wave spectral domain technique in conjunction with the complex resistive boundary condition is used to calculate the characteristics including resonant frequencies, bandwidths, and radiation efficiency. Numerical results for the air gap tuning effect on the operating frequency and bandwidth of the high Tc superconducting triangular microstrip antenna (HTSTMA) are presented. The effect of temperature on resonant frequency and bandwidth of the HTSTMA are also given. The computed data are found to be in good agreement with results obtained using other methods.

2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Igbafe Orikumhi ◽  
Mohamad Rijal Hamid ◽  
Ali Nyangwarimam Obadiah

A square slot antenna fed by a coplanar waveguide (CPW) is presented in this paper. The design consist of two pairs of “F” shaped planar strips placed within a square slotted ground. The strips are used to excite multiple resonant frequencies, the strips are connected to the ground plane by means of ideal switches. The proposed antenna has achieved multiple resonant frequencies of 2.4/5.2/5.8 GHz for WLAN and 3.5/5.5 for WiMAX applications. The measured results shows a good agreement with the simulated results in terms of return loss, radiation pattern and gain. The proposed antenna is designed for the frequency range of 2 GHz to 7 GHz which makes it suitable for Bluetooth, WLAN and WiMAX applications. 


2020 ◽  
Vol 14 (2) ◽  
pp. 104-110
Author(s):  
Mustafa Berkan Bicer

In this study, a coplanar waveguide-fed compact microstrip antenna design for applications operating at higher 5G bands was proposed. The antenna with the compact size of 8 x 12.2 mm2 on FR4 substrate, having the dielectric constant of 4.3 and the height of 1.55 mm, was considered. The dimensions of the radiating patch and ground plane were optimized with the use of artificial cooperative search (ACS) algorithm to provide the desired return loss performance of the designed antenna. The performance analysis was done by using full-wave electromagnetic package programs based on the method of moment (MoM) and the finite integration technique (FIT). The 10 dB bandwidth for return loss results obtained with the use of the computation methods show that the proposed antenna performs well for 5G applications operating in the 24.25 – 27.50 GHz, 26.50 – 29.50 GHz, 27.50 – 28.35 GHz and 37 – 40 GHz frequency bands.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Bambang Setia Nugroho ◽  
Fitri Yuli Zulkifli ◽  
Eko Tjipto Rahardjo

An analytical model for a frequency reconfigurable rectangular-ring microstrip antenna is proposed. The resonant frequencies and input impedance of the reconfigurable antenna are analyzed using a lossy-transmission-line (LTL) model. By making use of Y-admittance matrices, a formulation for the input impedance is analytically derived. The structure of the frequency reconfigurable antenna consists of a rectangular-ring shaped microstrip antenna which is loaded with a rectangular patch in the middle of the rectangular-ring antenna and fed by a microstrip line. RF switches are applied to connect the load to the antenna in order to reconfigure the operating frequencies. By modeling the antenna into a multiport equivalent circuit, the total input impedance is analytically derived to predict the resonant frequencies. To verify the analysis, the model input impedance and reflection coefficient calculation have been compared with the full-wave simulation and measurement results. The proposed model shows good agreement with full-wave simulated and measured results in the range of 1–3 GHz.


2013 ◽  
Vol 2 (2) ◽  
pp. 22
Author(s):  
S. Benkouda ◽  
T. Fortaki ◽  
M. Amir ◽  
A. Benghalia

This paper presents a rigorous full-wave analysis of a high Tc superconducting rectangular microstrip antenna with a rectangular aperture in the ground plane. To include the effect of the superconductivity of the microstrip patch in the full-wave analysis, a complex surface impedance is considered. The proposed approach is validated by comparing the computed results with previously published data. Results showing the effect of the aperture on the resonance of the superconducting microstrip antenna are given.


2018 ◽  
Vol 7 (5) ◽  
pp. 7-13 ◽  
Author(s):  
S. A. Shandal ◽  
Y. S. Mezaal ◽  
M. F. Mosleh ◽  
M. A. Kadim

In this paper, a pentagon slot inside fractal circular patch microstrip resonator to design compact antenna over partial ground plane is introduced using 3rd iteration of adopted fractal geometry. This antenna is modeled on FR4 substrate with a size of (20 x 18) mm2, thickness of 1.5mm, permittivity of 4.3 and loss tangent of 0.02. The used type of feeding is microstrip line feed. It is designed to operate at wide frequency range of (4.5-9.3) GHz at resonant frequencies of 5.7GHz and 7.9GHz with impedance bandwidth of 4.8 GHz. Both lengths of ground plane Lg and width of feed line Wf are optimized in order to acquire optimum bandwidth. The simulated return loss values are -33 and -41 dB at two resonant frequencies of 5.7 and 7.9 GHz with gain of 3.2 dB. The simulated results offered noteworthy compatibility with measured results. Also, the proposed wideband microstrip antenna has substantial compactness that can be integrated within numerous wireless devices and systems.


2014 ◽  
Vol 34 ◽  
pp. 143-151 ◽  
Author(s):  
Sami Bedra ◽  
Randa Bedra ◽  
Siham Benkouda ◽  
Tarek Fortaki

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 677
Author(s):  
Elham A. Serria ◽  
Mousa I. Hussein

This study is addressing the slotted ring resonator effect on the performance of the ultra-wide band (UWB) microstrip antenna. Two types of metamaterial with double slotted ring resonators (SRR), circular (C-SRR) and square (S-SRR), are studied and implemented on back of the antenna. The design examines the effect of the number of the SRR and its position with respect to the antenna’s ground plane and the rotation of the inner and outer C-SRR rings on different antenna characteristics. The dimensions of the antenna are 45 mm × 31 mm × 1.27 mm. The implementation of the SRR increased the antenna bandwidth to cover the range from 2.2 GHz to 9.8 GHz with rejected bands and frequencies. Antenna simulated characteristics like return loss, maximum gain and radiation pattern are obtained utilizing HFSS. The return loss measurement and the VSWR of the antenna with all SRR configuration studied are in good agreement with simulated results.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
N. Prombutr ◽  
P. Kirawanich ◽  
P. Akkaraekthalin

This article presents a bandwidth enhancing technique using a modified ground plane with diagonal edges, rectangular slot, and T-shape cut for the design of compact antennas. The proposed low-cost, compact-size circular patch antenna on 3 cm 5.1 cm printed circuit board (FR-4) is designed and validated through simulations and experiments. Results show that the T-shaped ground plane with the presence of the diagonal cuts at the top corners and the rectangular slots can increase the bandwidth. Return losses of 19 and 26 dB for the first and second resonant frequencies, respectively, can be achieved when the depth of the diagonal cut is 5 mm, the dimension of each rectangular slot is  mm, and the T-shaped size is  mm, providing a 28.67% wider bandwidth than FCC standard.


2018 ◽  
Vol 7 (4) ◽  
pp. 85-92 ◽  
Author(s):  
S. Shandal ◽  
Y. S. Mezaal ◽  
M. Kadim ◽  
M. Mosleh

In this paper, a miniature rectangular microstrip antenna over partial ground plane is presented by utilizing a space-filling property of fractal geometry in this design. It is simulated by High Frequency Software Simulator (HFSS) software, fabricated and tested by Vector Network Analyzer (VNA).Two types of slots are introduced in order to enhance antenna parameters such as bandwidth and return loss S1.1. This antenna is fabricated on FR4 substrate with a small size of (18 x 16 x 1.5) mm3, 1.5mm substrate thickness, 4.3 permittivity and 0.02 loss tangent. To feed this antenna,  microstrip line feed is used. This antenna is implemented for wide bandwidth (4.8-11.6) GHz, and has three resonant frequencies at 5.5GHz, 8.3GHz and 10.7GHz with impedance bandwidth of 6.8GHz. The gap value g between partial ground plane and rectangular patch at top layer is optimized in order to achieve optimal simulated return loss S1.1 is (-46,-32,-14) dB at three resonant frequencies (5.5, 8.3, 10.7) GHz and optimal radiation efficiency of 93.42% with gain of 3.63dB. The simulated results have tolerable agreement with measured results. This antenna is suitable for wireless computer applications within  C and X band  communications.


Sign in / Sign up

Export Citation Format

Share Document