A wideband dielectric resonator antenna with switchable diversity patterns

2019 ◽  
Vol 12 (4) ◽  
pp. 339-344
Author(s):  
Ahmad Abdalrazik ◽  
Adel B. Abdel-Rahman ◽  
Ahmed Allam ◽  
Mohammed Abo-Zahhad

AbstractIn this paper, a reduced-size dielectric resonator antenna with switchable diversity patterns is proposed. Ring- and linear-shaped slots are etched in the ground plane of the antenna so as to generate two modes $TE_{\delta 11}^x$ and $TE_{\delta 12}^x$ at a center frequency of 19 GHz. Moreover, two groups of PIN diodes are integrated into these slots to short one group of slots, and let the other group generates the required mode. Thus, the antenna is able to generate two switchable patterns with an envelope correlation coefficient of 0.4. Furthermore, the antenna size is reduced to half of its original size by placing a copper sheet over certain plane of the antenna structure. The antenna achieves wide bandwidths of 17.6–20.9 GHz (17.1$\percnt $) and 18.3–21.6 GHz (13.8$\percnt $) in cases of exciting $TE_{\delta 11}^x$ and $TE_{\delta 12}^x$ modes, respectively. The antenna also attainsa high gain of 7.1 and 3.2 dB at the center frequency.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Kamran Saleem ◽  
Majeed A. S. Alkanhal ◽  
Abdel Fattah Sheta

A novel pattern reconfigurable antenna concept utilizing rectangular dielectric resonator antenna (DRA) placed over dielectric substrate backed by a ground plane is presented. A dual strip excitation scheme is utilized and both excitation strips are connected together by means of a 50 Ω microstrip feed network placed over the substrate. The four vertical metallic parasitic strips are placed at corner of DRA each having a corresponding ground pad to provide a short/open circuit between the parasitic strip and antenna ground plane, through which a shift of90°in antenna radiation pattern in elevation plane is achieved. A fractional bandwidth of approximately 40% at center frequency of 1.6 GHz is achieved. The DRA peak realized gain in whole frequency band of operation is found to be above 4 dB. The antenna configuration along with simulation and measured results are presented.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joshua M. Patin ◽  
Satish K. Sharma

A novel single feed aperture-coupled wideband dielectric resonator antenna (DRA) exhibiting righ-handed circular polarization (RHCP) operating in the Ku-band frequency range is presented. The aperture-coupled single feed design utilizes back-side microstrip excitation through a novel bow-tie-shaped cross-slots in the ground plane. Extensive simulation parametric studies resulted in a 3 dB axial ratio (AR) bandwidth of 17.24% at a center frequency of 13 GHz, where the dielectric resonator is excited in its HEM11δresonant mode. A prototype DRA was fabricated with some limitations and experimentally verified for the impedance matching and radiation patterns showing circular polarization.


2012 ◽  
Vol 1 (3) ◽  
pp. 71
Author(s):  
H. A. E. Malhat ◽  
S. Zainud-deen ◽  
N. El-Shalaby ◽  
K. Awadalla

Dielectric resonator antenna (DRA) mounted on cylindrical ground plane is investigated for handheld RFID reader applications at 5.8 GHz. The simplicity of the structure makes it practical in terms of cost, space, and ease of fabrication. The radiation characteristics of the antenna in free space and in the presence of a proposed compact reader device model and human hand are calculated. The antenna is circularly polarized and exhibits peak gain of 7.62 dB at 5.8 GHz with high front to back ratio of 15.5 dB. Using the same reader device model, a sequentially feeding 2×2 DRA array mounted on the same cylindrical ground plane is used for RFID reader antenna at 5.8 GHz. The array introduces high gain of 9.36 dB at 5.8 GHz with high front to back ratio of 10.48 dB. The 2×2 DRA array elements exhibit circular polarization over a frequency band of 1.1 GHz. The axial ratio is 1.1 dB at 5.8 GHz. The proposed reader model is simple and has a small size compared with that in the case of planar ground plane. The results are calculated using the finite element method (FEM) and compared with that calculated using the finite integral technique (FIT).


2021 ◽  
Vol 25 (1) ◽  
pp. 11-19
Author(s):  
Mohamed Debab ◽  
◽  
Amina Bendaoudi ◽  
Zoubir Mahdjoub ◽  
◽  
...  

In this article, a dual-band notched ultra-wideband (UWB) dielectric resonator antenna is proposed. The antenna structure consists of Crescent Moon Dielectric Resonator (CMDR) fed by a stepped microstrip monopole printed antenna, partial ground plane, and an I-shaped stub. The Crescent Moon dielectric resonator is placed on the microstrip monopole printed antenna to achieve wide impedance bandwidth, and the I-shaped stub is utilized to improve impedance bandwidth for the WiMAX band. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. The entire band is useful with two filtered bands at 5.5 GHz and 6.8 GHz by the creation of notches. The band’s rejection, WLAN band (5.2–5.7 GHz), and the downlink frequency band of ITU 7 GHz-band for satellite communication (6.5–7.3 GHz) is realized by inserting G-shaped and C-shaped slots in the ground. The simulation results demonstrate that the proposed CMDR antenna achieves satisfactory UWB performance, with an impedance bandwidth of around 88.7%, covers the frequency band of 3.2 - 8.3 GHz, excluding a rejection band for the WLAN and ITU 7 GHz band. The CMDR is simulated using HFSS and CST high-frequency simulators.


2019 ◽  
Vol 8 (3) ◽  
pp. 57-63
Author(s):  
A. Zitouni ◽  
N. Boukli-Hacene

In this article, a novel T-shaped compact dielectric resonator antenna for ultra-wideband (UWB) application is presented and studied. The proposed DRA structure consists of T-shaped dielectric resonator fed by stepped microstrip monopole printed antenna, partial ground plane and an inverted L-shaped stub. The inverted L-shaped stub and parasitic strip are utilized to improve impedance bandwidth. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. From the simulation results, it is found that the proposed antenna structure operates over a frequency range of 3.45 to more than 28 GHz with a fractional bandwidth over 156.12%, which covers UWB application, and having better gain and radiation characteristics.


2021 ◽  
Vol 16 ◽  
pp. 194-197
Author(s):  
Guan-Pu Pan ◽  
Jiun-Da Lin ◽  
Tsung-lin Li ◽  
Jwo-Shiun Sun

In this paper, the new dielectric resonator antenna (DRA) is implemented by replacing the traditional dielectric resonator with a new material with low permittivity for ultra-wideband (UWB) application is presented and studied. A hybrid structure DRA was designed with parasitic slot to enhance the impedance bandwidth. The bandwidth met the specification of MB-OFDM for the bandwidth (3.168 GHz - 4.752 GHz). Finally, another antenna structure was designed. By applying the microstrip feed line, UWB and radiation characteristics are achieved. From the measured results, the proposed DRA showed good radiation pattern, high gain, wide bandwidth (3.03 GHz -10.7 GHz) and compact size. The bandwidth met the specification of MB-OFDM (3.168 GHz -10.56 GHz).


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 675 ◽  
Author(s):  
Irfan Ali ◽  
Mohd Haizal Jamaluddin ◽  
Abinash Gaya ◽  
Hasliza A. Rahim

In this paper, a dielectric resonator antenna (DRA) with high gain and wide impedance bandwidth for fifth-generation (5G) wireless communication applications is proposed. The dielectric resonator antenna is designed to operate at higher-order T E δ 15 x mode to achieve high antenna gain, while a hollow cylinder at the center of the DRA is introduced to improve bandwidth by reducing the quality factor. The DRA is excited by a 50   Ω microstrip line with a narrow aperture slot. The reflection coefficient, antenna gain, and radiation pattern of the proposed DRAs are analyzed using the commercially available full-wave electromagnetic simulation tool CST Microwave Studio (CST MWS). In order to verify the simulation results, the proposed antenna structures were fabricated and experimentally validated. Measured results of the fabricated prototypes show a 10-dB return loss impedance bandwidth of 10.7% (14.3–15.9GHz) and 16.1% (14.1–16.5 GHz) for DRA1 and DRA2, respectively, at the operating frequency of 15 GHz. The results show that the designed antenna structure can be used in the Internet of things (IoT) for device-to-device (D2D) communication in 5G systems.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2694
Author(s):  
Abinash Gaya ◽  
Mohd Haizal Jamaluddin ◽  
Irfan Ali ◽  
Ayman A. Althuwayb

A novel method of feeding a dielectric resonator using a metallic circular patch antenna at millimeter wave frequency band is proposed here. A ceramic material based rectangular dielectric resonator antenna with permittivity 10 is placed over a rogers RT-Duroid based substrate with permittivity 2.2 and fed by a metallic circular patch via a cross slot aperture on the ground plane. The evolution study and analysis has been done using a rectangular slot and a cross slot aperture. The cross-slot aperture has enhanced the gain of the single element non-metallic dielectric resonator antenna from 6.38 dB from 8.04 dB. The Dielectric Resonator antenna (DRA) which is designed here has achieved gain of 8.04 dB with bandwidth 1.12 GHz (24.82–25.94 GHz) and radiation efficiency of 96% centered at 26 GHz as resonating frequency. The cross-slot which is done on the ground plane enhances the coupling to the Dielectric Resonator Antenna and achieves maximum power radiation along the broadside direction. The slot dimensions are further optimized to achieve the desired impedance match and is also compared with that of a single rectangular slot. The designed antenna can be used for the higher frequency bands of 5G from 24.25 GHz to 27.5 GHz. The mode excited here is characteristics mode of TE1Y1. The antenna designed here can be used for indoor small cell applications at millimeter wave frequency band of 5G. High gain and high efficiency make the DRA designed here more suitable for 5G indoor small cells. The results of return loss, input impedance match, gain, radiation pattern, and efficiency are shown in this paper.


2007 ◽  
Vol 17 (1) ◽  
pp. 1-30
Author(s):  
S.H. Zainud-Deen ◽  
E. El-Deen ◽  
H.A. Sharshar ◽  
M. A. Binyamin

Sign in / Sign up

Export Citation Format

Share Document