Empirical path loss models for 5G wireless sensor network in coastal pebble/sand environments

Author(s):  
Ibrahim Bahadir Basyigit

Abstract Propagation modeling of small/big pebbles and air-dry/wet sand environments for wireless sensor networks has not been extensively studied in the 5G frequency band. This study is necessary for the proper coverage planning and efficient operation of wireless sensors in various applications such as monitoring summer sporting activities, and environmental/ground surveillance on coastal pebble/sand environments, or tracking pebble mobility and including the rescue of the flood-type avalanche in Gravel-Bed Rivers. In this study, empirical path loss models are proposed for wireless sensor networks in pebble/sand environments at two discrete frequencies, namely 3.5 and 4.2 GHz. The theoretical models and proposed models are compared to indicate the accuracy of proposed models in predicting the path loss in these environments. Additionally, R-squared and RMSE values of eight different generated models are calculated in the range of 0.931–0.877 and 2.284–2.837, respectively. These comparisons indicate that empirical model parameters have a significant effect on the path loss model.

2021 ◽  
Vol 40 (5) ◽  
pp. 8727-8740
Author(s):  
Rajvir Singh ◽  
C. Rama Krishna ◽  
Rajnish Sharma ◽  
Renu Vig

Dynamic and frequent re-clustering of nodes along with data aggregation is used to achieve energy-efficient operation in wireless sensor networks. But dynamic cluster formation supports data aggregation only when clusters can be formed using any set of nodes that lie in close proximity to each other. Frequent re-clustering makes network management difficult and adversely affects the use of energy efficient TDMA-based scheduling for data collection within the clusters. To circumvent these issues, a centralized Fixed-Cluster Architecture (FCA) has been proposed in this paper. The proposed scheme leads to a simplified network implementation for smart spaces where it makes more sense to aggregate data that belongs to a cluster of sensors located within the confines of a designated area. A comparative study is done with dynamic clusters formed with a distributive Low Energy Adaptive Clustering Hierarchy (LEACH) and a centralized Harmonic Search Algorithm (HSA). Using uniform cluster size for FCA, the results show that it utilizes the available energy efficiently by providing stability period values that are 56% and 41% more as compared to LEACH and HSA respectively.


2012 ◽  
Vol 490-495 ◽  
pp. 1392-1396 ◽  
Author(s):  
Chu Hang Wang

Topology control is an efficient approach which can reduce energy consumption for wireless sensor networks, and the current algorithms mostly focus on reducing the nodes’ energy consumption by power adjusting, but pay little attention to balance energy consumption of the whole network, which results in premature death of many nodes. Thus, a distributed topology control algorithm based on path-loss and residual energy (PRTC) is designed in this paper. This algorithm not only maintains the least loss links between nodes but also balances the energy consumption of the network. The simulation results show that the topology constructed by PRTC can preserve network connectivity as well as extend the lifetime of the network and provide good performance of energy consumption.


Author(s):  
Mohammad Abdel Rahim ◽  
Mohamed Hadi Habaebi ◽  
Jalel Chebil ◽  
Aisha Hassan A. Hashim ◽  
Musse Mohamud Ahmed ◽  
...  

Wireless Sensor Networks (WSNs) are emerging network technology with innumerable applications. But security and energy constraints reduce its successful deployments. The nodes in network are greatly involved in transmissions and other processing operations for maintenance other than establishing or handling a call. Due to limited processing ability, storage capacity and most importantly the available battery power of the nodes, it is required to minimize the transmission power and the amount of data transmitted, for efficient operation. This paper presents a power aware routing protocol designed for wireless sensor networks. The proposed routing protocol is an extended and enhanced version of Dynamic Source Routing protocol. It adds energy awareness to the existing implementation of DSR protocol. Energy metric is considered during route selection process to choose an optimal path in terms of overall energy of the nodes along the path, and “low energy notification” method is used during route maintenance process to increase the lifetime of the bridge nodes to avoid network partitioning. The performance of DSR protocol and Energy Aware DSR (EADSR) protocol are compared through NS2 simulation under different scenarios. In all the cases, it is seen that EADSR protocol out-performs DSR protocol by energy saving in efficient manner


2016 ◽  
Vol 127 ◽  
pp. 553-560 ◽  
Author(s):  
Auda Raheemah ◽  
Naseer Sabri ◽  
M.S. Salim ◽  
Phaklen Ehkan ◽  
R. Badlishah Ahmad

Author(s):  
Adamu Murtala Zungeru ◽  
Joseph Chuma ◽  
Mmoloki Mangwala ◽  
Boyce Sigweni ◽  
Oduetse Matsebe

The most challenging issue in the design of wireless sensor networks for the application of localization in the underground environment, mostly for miner’s location, is the sensor nodes’ energy consumption, efficiency and communication. Underground Wireless Sensor Networks are active and promising area of application of Wireless Sensor Networks (WSNs), whereby sensor nodes perform sensing duties in the underground environment. Most of the communication techniques used in the underground environment experience a high path loss and hence, hinders the range needed for transmission. However, the available option to increase information transmission is to increase the transmission power which needs large size of apparatus which is also limited in the underground. To solve the mentioned problems, this paper proposed a Magnetic Induction based Pulse Power. Analytical results of the Magnetic Induction based Pulse Power with an ordinary magnetic induction communication technique show an improvement in Signal-to-Noise Ratio (SNR) and path loss with variation in distance between nodes and frequency of operation. This paper further formulates a nonlinear program to determine the optimal data (events) extraction in a grid based WUSNs.


Sign in / Sign up

Export Citation Format

Share Document