scholarly journals Polygenic Risk Scores for Psychiatric Disorders Reveal Novel Clues About the Genetics of Disordered Gambling

2019 ◽  
Vol 22 (5) ◽  
pp. 283-289
Author(s):  
Thomas M. Piasecki ◽  
Ian R. Gizer ◽  
Wendy S. Slutske

AbstractDisordered gambling (DG) is a rare but serious condition that results in considerable financial and interpersonal harms. Twin studies indicate that DG is heritable but are silent with respect to specific genes or pathways involved. Existing genomewide association studies (GWAS) of DG have been substantially underpowered. Larger GWAS of other psychiatric disorders now permit calculation of polygenic risk scores (PRSs) that reflect the aggregated effects of common genetic variants contributing risk for the target condition. The current study investigated whether gambling and DG are associated with PRSs for four psychiatric conditions found to be comorbid with DG in epidemiologic surveys: major depressive disorder (MDD), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD) and schizophrenia (SCZ). Genotype data and survey responses were analyzed from the Wave IV assessment (conducted in 2008) of the National Longitudinal Study of Adolescent to Adult Health, a representative sample of adolescents recruited in 1994–1995 and followed into adulthood. Among participants classified as having European ancestry based on genetic analysis (N = 5215), 78.4% reported ever having gambled, and 1.3% reported lifetime DG. Polygenic risk for BD was associated with decreased odds of lifetime gambling, OR = 0.93 [0.87, 0.99], p = .045, pseudo-R2(%) = .12. The SCZ PRS was associated with increased odds of DG, OR = 1.54 [1.07, 2.21], p = .02, pseudo-R2(%) = .85. Polygenic risk scores for MDD and ADHD were not related to either gambling outcome. Investigating features common to both SCZ and DG might generate valuable clues about the genetically influenced liabilities to DG.

2019 ◽  
Author(s):  
Thomas M. Piasecki ◽  
Ian R. Gizer ◽  
Wendy S. Slutske

Background and Aims: Twin studies indicate that disordered gambling (DG) is heritable but are silent with respect to specific genes or pathways involved. Genome-wide association studies of other psychiatric disorders permit calculation of polygenic risk scores (PRS) that reflect the aggregated effects of common genetic variants contributing to risk for the target condition. We investigated whether gambling and DG are associated with PRSs for four psychiatric conditions found to be comorbid with DG in epidemiologic surveys. Design and Setting: Data were drawn from the Wave IV assessment of the National Longitudinal Study of Adolescent to Adult Health, a representative sample of adolescents recruited in 1994-5 and followed into young adulthood. Participants: Analyses were limited to unrelated individuals classified as having European ancestry based on analysis of genetic principal components (N = 5,215). Measurements: Participants were surveyed about lifetime gambling and DG. Genotyping data were used to construct PRSs quantifying participants’ common variant genetic risk for major depression (MDD), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD), and schizophrenia (SCZ). Findings: Most participants (78.4%) reported ever having gambled, and 1.3% of those reported lifetime DG. Polygenic risk for BD was associated with decreased odds of lifetime gambling, OR = 0.93 [0.87, 0.99], p = .045, pseudo-R2(%) = 0.12. The SCZ PRS was associated with increased odds of DG, OR = 1.54 [1.07, 2.21], p = .020, pseudo-R2 (%) = 0.85. Polygenic risk for MDD and ADHD were not related to either gambling outcome. Conclusions: Common variant risk for SCZ is associated with DG. Investigating features common to both SCZ and DG might generate valuable clues about the genetically-influenced liabilities to DG.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 1528-1528
Author(s):  
Heena Desai ◽  
Anh Le ◽  
Ryan Hausler ◽  
Shefali Verma ◽  
Anurag Verma ◽  
...  

1528 Background: The discovery of rare genetic variants associated with cancer have a tremendous impact on reducing cancer morbidity and mortality when identified; however, rare variants are found in less than 5% of cancer patients. Genome wide association studies (GWAS) have identified hundreds of common genetic variants significantly associated with a number of cancers, but the clinical utility of individual variants or a polygenic risk score (PRS) derived from multiple variants is still unclear. Methods: We tested the ability of polygenic risk score (PRS) models developed from genome-wide significant variants to differentiate cases versus controls in the Penn Medicine Biobank. Cases for 15 different cancers and cancer-free controls were identified using electronic health record billing codes for 11,524 European American and 5,994 African American individuals from the Penn Medicine Biobank. Results: The discriminatory ability of the 15 PRS models to distinguish their respective cancer cases versus controls ranged from 0.68-0.79 in European Americans and 0.74-0.93 in African Americans. Seven of the 15 cancer PRS trended towards an association with their cancer at a p<0.05 (Table), and PRS for prostate, thyroid and melanoma were significantly associated with their cancers at a bonferroni corrected p<0.003 with OR 1.3-1.6 in European Americans. Conclusions: Our data demonstrate that common variants with significant associations from GWAS studies can distinguish cancer cases versus controls for some cancers in an unselected biobank population. Given the small effects, future studies are needed to determine how best to incorporate PRS with other risk factors in the precision prediction of cancer risk. [Table: see text]


2020 ◽  
Author(s):  
Evan A. Winiger ◽  
Jarrod M. Ellingson ◽  
Claire L. Morrison ◽  
Robin P. Corley ◽  
Joëlle A. Pasman ◽  
...  

AbstractStudy ObjectivesEstimate the genetic relationship of cannabis use with sleep deficits and eveningness chronotype.MethodsWe used linkage disequilibrium score regression (LDSC) to analyze genetic correlations between sleep deficits and cannabis use behaviors. Secondly, we generated sleep deficit polygenic risk scores (PRSs) and estimated their ability to predict cannabis use behaviors using logistic regression. Summary statistics came from existing genome wide association studies (GWASs) of European ancestry that were focused on sleep duration, insomnia, chronotype, lifetime cannabis use, and cannabis use disorder (CUD). A target sample for PRS prediction consisted of high-risk participants and participants from twin/family community-based studies (n = 796, male = 66%; mean age = 26.81). Target data consisted of self-reported sleep (sleep duration, feeling tired, and taking naps) and cannabis use behaviors (lifetime use, number of lifetime uses, past 180-day use, age of first use, and lifetime CUD symptoms).ResultsSignificant genetic correlation between lifetime cannabis use and eveningness chronotype (rG = 0.24, p < 0.01), as well as between CUD and both short sleep duration (<7 h) (rG = 0.23, p = 0.02) and insomnia (rG = 0.20, p = 0.02). Insomnia PRS predicted earlier age of first cannabis use (β = −0.09, p = 0.02) and increased lifetime CUD symptom count use (β = 0.07, p = 0.03).ConclusionCannabis use is genetically associated with both sleep deficits and an eveningness chronotype, suggesting that there are genes that predispose individuals to both cannabis use and sleep deficits.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yanyu Liang ◽  
Milton Pividori ◽  
Ani Manichaikul ◽  
Abraham A. Palmer ◽  
Nancy J. Cox ◽  
...  

Abstract Background Polygenic risk scores (PRS) are valuable to translate the results of genome-wide association studies (GWAS) into clinical practice. To date, most GWAS have been based on individuals of European-ancestry leading to poor performance in populations of non-European ancestry. Results We introduce the polygenic transcriptome risk score (PTRS), which is based on predicted transcript levels (rather than SNPs), and explore the portability of PTRS across populations using UK Biobank data. Conclusions We show that PTRS has a significantly higher portability (Wilcoxon p=0.013) in the African-descent samples where the loss of performance is most acute with better performance than PRS when used in combination.


2021 ◽  
Author(s):  
Ying Wang ◽  
Shinichi Namba ◽  
Esteban Lopera ◽  
Sini Kerminen ◽  
Kristin Tsuo ◽  
...  

SummaryWith the increasing availability of biobank-scale datasets that incorporate both genomic data and electronic health records, many associations between genetic variants and phenotypes of interest have been discovered. Polygenic risk scores (PRS), which are being widely explored in precision medicine, use the results of association studies to predict the genetic component of disease risk by accumulating risk alleles weighted by their effect sizes. However, limited studies have thoroughly investigated best practices for PRS in global populations across different diseases. In this study, we utilize data from the Global-Biobank Meta-analysis Initiative (GBMI), which consists of individuals from diverse ancestries and across continents, to explore methodological considerations and PRS prediction performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRS using heuristic (pruning and thresholding, P+T) and Bayesian (PRS-CS) methods. We found that the genetic architecture, such as SNP-based heritability and polygenicity, varied greatly among endpoints. For both PRS construction methods, using a European ancestry LD reference panel resulted in comparable or higher prediction accuracy compared to several other non-European based panels; this is largely attributable to European descent populations still comprising the majority of GBMI participants. PRS-CS overall outperformed the classic P+T method, especially for endpoints with higher SNP-based heritability. For example, substantial improvements are observed in East-Asian ancestry (EAS) using PRS-CS compared to P+T for heart failure (HF) and chronic obstructive pulmonary disease (COPD). Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma which has known variation in disease prevalence across global populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using the GBMI and highlight the importance of best practices for PRS in the biobank-scale genomics era.


2019 ◽  
Author(s):  
Yan Zhang ◽  
Amber N. Wilcox ◽  
Haoyu Zhang ◽  
Parichoy Pal Choudhury ◽  
Douglas F. Easton ◽  
...  

AbstractWe analyzed summary-level data from genome-wide association studies (GWAS) of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) contributing to risk, as well as the distribution of their associated effect sizes. All cancers evaluated showed polygenicity, involving at a minimum thousands of independent susceptibility variants. For some malignancies, particularly chronic lymphoid leukemia (CLL) and testicular cancer, there are a larger proportion of variants with larger effect sizes than those for other cancers. In contrast, most variants for lung and breast cancers have very small associated effect sizes. For different cancer sites, we estimate a wide range of GWAS sample sizes, required to explain 80% of GWAS heritability, varying from 60,000 cases for CLL to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk scores, compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that polygenic risk scores have substantial potential for risk stratification for relatively common cancers such as breast, prostate and colon, but limited potential for other cancer sites because of modest heritability and lower disease incidence.


2021 ◽  
pp. 1-9
Author(s):  
Ikuo Otsuka ◽  
Hanga Galfalvy ◽  
Jia Guo ◽  
Masato Akiyama ◽  
Dan Rujescu ◽  
...  

Abstract Background Suicidal behavior is moderately heritable and a consequence of a combination of the diathesis traits for suicidal behavior and suicide-related major psychiatric disorders. Here, we sought to examine shared polygenic effects between various psychiatric disorders/traits and suicidal behavior and to compare the shared polygenic effects of various psychiatric disorders/traits on non-fatal suicide attempt and suicide death. Methods We used our genotyped European ancestry sample of 260 non-fatal suicide attempters, 317 suicide decedents and 874 non-psychiatric controls to test whether polygenic risk scores (PRSs) obtained from large GWASs for 22 suicide-related psychiatric disorders/traits were associated with suicidal behavior. Results were compared between non-fatal suicide attempt and suicide death in a sensitivity analysis. Results PRSs for major depressive disorder, bipolar disorder, schizophrenia, ADHD, alcohol dependence, sensitivity to environmental stress and adversity, educational attainment, cognitive performance, and IQ were associated with suicidal behavior (Bonferroni-corrected p < 2.5 × 10−4). The polygenic effects of all 22 psychiatric disorders/traits had the same direction (p for binomial tests = 4.8 × 10−7) and were correlated (Spearman's ρ = 0.85) between non-fatal suicide attempters and suicide decedents. Conclusions We found that polygenic effects for major psychiatric disorders and diathesis-related traits including stress responsiveness and intellect/cognitive function contributed to suicidal behavior. While we found comparable polygenic architecture between non-fatal suicide attempters and suicide decedents based on correlations with PRSs of suicide-related psychiatric disorders/traits, our analyses are limited by small sample size resulting in low statistical power to detect difference between non-fatal suicide attempt and suicide death.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009670
Author(s):  
Lars G. Fritsche ◽  
Ying Ma ◽  
Daiwei Zhang ◽  
Maxwell Salvatore ◽  
Seunggeun Lee ◽  
...  

Polygenic risk scores (PRS) can provide useful information for personalized risk stratification and disease risk assessment, especially when combined with non-genetic risk factors. However, their construction depends on the availability of summary statistics from genome-wide association studies (GWAS) independent from the target sample. For best compatibility, it was reported that GWAS and the target sample should match in terms of ancestries. Yet, GWAS, especially in the field of cancer, often lack diversity and are predominated by European ancestry. This bias is a limiting factor in PRS research. By using electronic health records and genetic data from the UK Biobank, we contrast the utility of breast and prostate cancer PRS derived from external European-ancestry-based GWAS across African, East Asian, European, and South Asian ancestry groups. We highlight differences in the PRS distributions of these groups that are amplified when PRS methods condense hundreds of thousands of variants into a single score. While European-GWAS-derived PRS were not directly transferrable across ancestries on an absolute scale, we establish their predictive potential when considering them separately within each group. For example, the top 10% of the breast cancer PRS distributions within each ancestry group each revealed significant enrichments of breast cancer cases compared to the bottom 90% (odds ratio of 2.81 [95%CI: 2.69,2.93] in European, 2.88 [1.85, 4.48] in African, 2.60 [1.25, 5.40] in East Asian, and 2.33 [1.55, 3.51] in South Asian individuals). Our findings highlight a compromise solution for PRS research to compensate for the lack of diversity in well-powered European GWAS efforts while recruitment of diverse participants in the field catches up.


2021 ◽  
Author(s):  
Louise Wang ◽  
Heena Desai ◽  
Shefali S. Verma ◽  
Anh Le ◽  
Ryan Hausler ◽  
...  

Purpose: Genome-wide association studies (GWAS) have identified hundreds of single nucleotide polymorphisms (SNPs) significantly associated with several cancers, but the predictive ability of polygenic risk scores (PRS) derived from multiple variants is unclear for many cancers, especially among non-European populations. Methods: Genome wide genotype data was available for 20,079 individuals enrolled in an academic biobank. PRS were derived from significant DNA variants for 15 cancers. Logistic regression was used to determine the discriminatory accuracy of each cancer-specific PRS in patients of genetically determined African and European ancestry separately. Results: Among European individuals, four PRS were significantly associated with their respective cancers (breast, colon, melanoma, and prostate), with an OR ranging from 1.25-1.47. Among African individuals, PRS for breast, colon, and prostate were significantly associated with their respective cancers. The discriminatory ability of a model comprised of age, sex, and principal components was 0.617–0.709, and the AUC increased by 1-4% with the addition of the PRS in Europeans. AUC was overall higher in the full model including PRS (AUC 0.742-0.818) in African individuals, but the PRS increased the AUC by less than 1% in the majority of cancers in African individuals. Conclusion: PRS constructed from SNPs moderately increased discriminatory ability for cancer status over age, sex, and nonspecific genetic factors in individuals of European but not African ancestry. Further large-scale studies are needed to identify ancestry-specific genetic factors for cancer risk in non-European populations to incorporate PRS into cancer risk assessment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lukasz Smigielski ◽  
Sergi Papiol ◽  
Anastasia Theodoridou ◽  
Karsten Heekeren ◽  
Miriam Gerstenberg ◽  
...  

AbstractAs early detection of symptoms in the subclinical to clinical psychosis spectrum may improve health outcomes, knowing the probabilistic susceptibility of developing a disorder could guide mitigation measures and clinical intervention. In this context, polygenic risk scores (PRSs) quantifying the additive effects of multiple common genetic variants hold the potential to predict complex diseases and index severity gradients. PRSs for schizophrenia (SZ) and bipolar disorder (BD) were computed using Bayesian regression and continuous shrinkage priors based on the latest SZ and BD genome-wide association studies (Psychiatric Genomics Consortium, third release). Eight well-phenotyped groups (n = 1580; 56% males) were assessed: control (n = 305), lower (n = 117) and higher (n = 113) schizotypy (both groups of healthy individuals), at-risk for psychosis (n = 120), BD type-I (n = 359), BD type-II (n = 96), schizoaffective disorder (n = 86), and SZ groups (n = 384). PRS differences were investigated for binary traits and the quantitative Positive and Negative Syndrome Scale. Both BD-PRS and SZ-PRS significantly differentiated controls from at-risk and clinical groups (Nagelkerke’s pseudo-R2: 1.3–7.7%), except for BD type-II for SZ-PRS. Out of 28 pairwise comparisons for SZ-PRS and BD-PRS, 9 and 12, respectively, reached the Bonferroni-corrected significance. BD-PRS differed between control and at-risk groups, but not between at-risk and BD type-I groups. There was no difference between controls and schizotypy. SZ-PRSs, but not BD-PRSs, were positively associated with transdiagnostic symptomology. Overall, PRSs support the continuum model across the psychosis spectrum at the genomic level with possible irregularities for schizotypy. The at-risk state demands heightened clinical attention and research addressing symptom course specifiers. Continued efforts are needed to refine the diagnostic and prognostic accuracy of PRSs in mental healthcare.


Sign in / Sign up

Export Citation Format

Share Document