Cover Crop and Postemergence Herbicide Integration for Palmer amaranth Control in Cotton

2017 ◽  
Vol 31 (3) ◽  
pp. 348-355 ◽  
Author(s):  
Matthew S. Wiggins ◽  
Robert M. Hayes ◽  
Robert L. Nichols ◽  
Lawrence E. Steckel

Field experiments were conducted to evaluate the integration of cover crops and POST herbicides to control glyphosate-resistant Palmer amaranth in cotton. The winter-annual grasses accumulated the greatest amount of biomass and provided the most Palmer amaranth control. The estimates for the logistic regression would indicate that 1540 kg ha−1would delay Palmer amaranth emerging and growing to 10 cm by an estimated 16.5 days. The Palmer amaranth that emerged in the cereal rye and wheat cover crop treatments took a longer time to reach 10 cm compared to the hairy vetch and crimson clover treatments. POST herbicides were needed for adequate control of Palmer amaranth. The glufosinate-based weed control system provided greater control (75% vs 31%) of Palmer amaranth than did the glyphosate system. These results indicate that a POST only herbicide weed management system did not provide sufficient control of Palmer amaranth, even when used in conjunction with cover crops that produced a moderate level of biomass. Therefore, future recommendations for GR Palmer amaranth control will include integrating cover crops with PRE herbicides, overlaying residual herbicides in-season, timely POST herbicide applications, and hand weeding in order to achieve season-long control of this pest.

2019 ◽  
Vol 33 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Kara B. Pittman ◽  
Jacob N. Barney ◽  
Michael L. Flessner

AbstractHorseweed is a problematic weed to control, especially in no-tillage production. Increasing cases of herbicide resistance have exacerbated the problem, necessitating alternative control options and an integrated weed management approach. Field experiments were conducted to evaluate horseweed suppression from fall-planted cover crop monocultures and mixtures as well as two fall-applied residual herbicide treatments. Prior to cover crop termination, horseweed density was reduced by 88% to 96% from cover crops. At cover crop termination in late spring, cereal rye biomass was 7,671 kg ha–1, which was similar to cereal rye–containing mixtures (7,720 kg ha–1) but greater than legumes in monoculture (3,335 kg ha–1). After cover crops were terminated in late spring using a roller crimper, corn and soybeans were planted and horseweed was evaluated using density counts, visible ratings, and biomass collection until harvest. Forage radish winterkilled, offering no competition in late winter or biomass to contribute to horseweed suppression after termination. Excluding forage radish in monoculture, no difference in horseweed suppression was detected between cereal rye–containing cover crops and legumes (crimson clover and hairy vetch) in monoculture. Likewise, horseweed suppression was similar between monocultures and mixtures, with the exception of one site-year in which mixtures provided better suppression. In this experiment, the cover crop treatments performed as well as or better than the fall-applied residual herbicides, flumioxazin+paraquat and metribuzin+chlorimuron-ethyl. These results indicate that fall-planted cover crops are a viable option to suppress horseweed and can be an effective part of an integrated weed management program. Furthermore, cover crop mixtures can be used to gain the benefits of legume or brassica cover crop species without sacrificing horseweed suppression.


2017 ◽  
Vol 32 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractWith the recent confirmation of protoporphyrinogen oxidase (PPO)-resistant Palmer amaranth in the US South, concern is increasing about the sustainability of weed management in cotton production systems. Cover crops can help to alleviate this problem, as they can suppress weed emergence via allelochemicals and/or a physical residue barrier. Field experiments were conducted in 2014 and 2015 at the Arkansas Agricultural Research and Extension Center to evaluate various cover crops for suppressing weed emergence and protecting cotton yield. In both years, cereal rye and wheat had the highest biomass production, whereas the amount of biomass present in spring did not differ among the remaining cover crops. All cover crops initially diminished Palmer amaranth emergence. However, cereal rye provided the greatest suppression, with 83% less emergence than in no cover crop plots. Physical suppression of Palmer amaranth and other weeds with cereal residues is probably the greatest contributor to reducing weed emergence. Seed cotton yield in the legume and rapeseed cover crop plots were similar when compared with the no cover crop treatment. The seed cotton yield collected from cereal cover crop plots was lower than from other treatments due to decreased cotton stand.


2017 ◽  
Vol 31 (4) ◽  
pp. 514-522 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as a component of Midwest corn and soybean production systems has led to a greater need to understand the most effective herbicide treatments for cover crop termination prior to planting corn or soybean. Previous research has shown that certain cover crop species can significantly reduce subsequent cash crop yields if not completely terminated. Two field experiments were conducted in 2013, 2014, and 2015 to determine the most effective herbicide program for the termination of winter wheat, cereal rye, crimson clover, Austrian winter pea, annual ryegrass, and hairy vetch; and cover crops were terminated in early April or early May. Visual control and above ground biomass reduction was determined 28 d after application (DAA). Control of grass cover crop species was often best with glyphosate alone or combined with 2,4-D, dicamba, or saflufenacil. The most consistent control of broadleaf cover crops occurred following treatment with glyphosate +2,4-D, dicamba, or saflufenacil. In general, control of cover crops was higher with early April applications compared to early May. In a separate study, control of 15-, 25-, and 75-cm tall annual ryegrass was highest with glyphosate at 2.8 kg ha−1or glyphosate at 1.4 kg ha−1plus clethodim at 0.136 kgha−1. Paraquat- or glufosinate-containing treatments did not provide adequate annual ryegrass control. For practitioners who desire higher levels of cover crop biomass, these results indicate that adequate levels of cover crop control can still be achieved in the late spring with certain herbicide treatments. But it is important to consider cover crop termination well in advance to ensure the most effective herbicide or herbicide combinations are used and the products are applied at the appropriate stage.


2016 ◽  
Vol 30 (2) ◽  
pp. 415-422 ◽  
Author(s):  
Matthew S. Wiggins ◽  
Robert M. Hayes ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic in cotton-producing areas of the midsouthern region of the United States. Growers rely heavily on PRE residual herbicides to control Palmer amaranth since few effective POST options exist. Interest in integrating high-residue cover crops with existing herbicide programs to combat GR weeds has increased. Research was conducted in 2013 and 2014 in Tennessee to evaluate GR Palmer amaranth control when integrating cover crops and PRE residual herbicides. Cereal rye, crimson clover, hairy vetch, winter wheat, and combinations of one grass plus one legume were compared with winter weeds without a cover crop followed by fluometuron or acetochlor applied PRE. Biomass of cover crops was determined prior to termination 3 wk before planting. Combinations of grass and legume cover crops accumulated the most biomass (> 3,500 kg ha−1) but by 28 d after application (DAA) the cereal rye and wheat provided the best Palmer amaranth control. Crimson clover and hairy vetch treatments had the greatest number of Palmer amaranth. These cereal and legume blends reduced Palmer amaranth emergence by half compared to non–cover-treated areas. Fluometuron and acetochlor controlled Palmer amaranth 95 and 89%, respectively, at 14 DAA and 54 and 62%, respectively, at 28 DAA. Cover crops in combination with a PRE herbicide did not adequately control Palmer amaranth.


2012 ◽  
Vol 26 (4) ◽  
pp. 818-825 ◽  
Author(s):  
Zachary D. Hayden ◽  
Daniel C. Brainard ◽  
Ben Henshaw ◽  
Mathieu Ngouajio

Winter annual weeds can interfere directly with crops and serve as alternative hosts for important pests, particularly in reduced tillage systems. Field experiments were conducted on loamy sand soils at two sites in Holt, MI, between 2008 and 2011 to evaluate the relative effects of cereal rye, hairy vetch, and rye–vetch mixture cover crops on the biomass and density of winter annual weed communities. All cover crop treatments significantly reduced total weed biomass compared with a no-cover-crop control, with suppression ranging from 71 to 91% for vetch to 95 to 98% for rye. In all trials, the density of nonmustard family broadleaf weeds was either not suppressed or suppressed equally by all cover crop treatments. In contrast, the density of mustard family weed species was suppressed more by rye and rye–vetch mixtures than by vetch. Cover crops were more consistently suppressive of weed dry weight per plant than of weed density, with rye-containing cover crops generally more suppressive than vetch. Overall, rye was most effective at suppressing winter annual weeds; however, rye–vetch mixtures can match the level of control achieved by rye, in addition to providing a potential source of fixed nitrogen for subsequent cash crops.


2021 ◽  
pp. 1-29
Author(s):  
Victor H. V. Ribeiro ◽  
Maxwel C. Oliveira ◽  
Daniel H. Smith ◽  
Jose B. Santos ◽  
Rodrigo Werle

Amidst widespread occurrence of herbicide-resistant weeds in the United States, the use of PRE herbicides and cover crops have resurged once again as important strategies for weed management in cropping systems. The objective of this experiment was to evaluate the length of soil residual weed control from PRE soybean herbicides and the detrimental impact of these herbicides on cover crop species using field treated soil in greenhouse bioassays. Greenhouse bioassays were conducted using soil from field experiments conducted in 2018 and 2019 at Arlington and Lancaster, WI. PRE herbicides consisted of imazethapyr, chlorimuron-ethyl, and cloransulam-methyl (acetolactate synthase [ALS]-inhibitors), metribuzin (photosystem II [PSII]-inhibitor), sulfentrazone, flumioxazin, and saflufenacil (protoporphyrinogen oxidase [PPO]-inhibitors), acetochlor, S-metolachlor, dimethenamid-P, and pyroxasulfone (very long-chain fatty acid [VLCFA]-inhibitors), and a nontreated control. Greenhouse bioassays were conducted using soil (0-10 cm depth) sampled at 0, 10, 20, 30, 40 and 50 d after treatment (DAT). Palmer amaranth and giant foxtail (weeds), and radish and cereal rye (cover crops) were used as bioindicators of herbicide levels in the soil. Bioassay results showed extended soil residual control of Palmer amaranth with sulfentrazone and pyroxasulfone; extended residual control of giant foxtail was observed with pyroxasulfone and S-metolachlor. Chlorimuron-ethyl and metribuzin were the most injurious herbicides to radish and cereal rye shortly after application, respectively, but minimal injury was observed from soil samples collected 50 DAT indicating the use of PRE and fall seeded cover crops in southern Wisconsin can be compatible. These results can support growers and practitioners with selection of effective PRE herbicides for Palmer amaranth and giant foxtail control and reduced impact on fall seeded radish and cereal rye cover crops altogether leading to more effective, diverse and sustainable weed management programs.


2019 ◽  
Vol 34 (3) ◽  
pp. 383-393
Author(s):  
Erin R. Haramoto ◽  
Carolyn J. Lowry ◽  
Robert Pearce

AbstractWinter cover crops (CCs) provide soil conservation benefits for strip-tillage tobacco producers, but soil-residual herbicides may interfere with their establishment and growth. Tobacco is planted later than many agronomic crops, but growers often terminate CCs early to minimize CC residue at planting, and this may reduce weed suppression potential. We examined residual herbicide effects on CCs across two seasons and the potential for CC-based weed suppression within strip-tilled tobacco. Mixtures of wheat plus crimson clover and cereal rye plus crimson clover were examined, with a no-CC control. Herbicides included two rates of PRE sulfentrazone (177 or 354 g ai ha–1) plus carfentrazone (20 or 40 g ai ha–1); the higher rate was also followed by POST clomazone (840 g ai ha–1) or mixed with PRE pendimethalin (1,400 g ai ha–1). Controls with no weed management and hand weeding were also included. CC density and biomass were not reduced by weed management (WM) treatments with residual herbicides. However, CCs did not reduce density of annual grasses, small-seeded broadleaves, or perennials in the tilled in-row or untilled between-row zones. Cereal rye plus crimson clover resulted in lower weed biomass at tobacco harvest in the untilled between-row zone in 2017. WM effects were variable between the years, weed groups, and zones. Adding clomazone or pendimethalin was more consistent for reducing weed density and biomass compared to the low rate of sulfentrazone plus carfentrazone. Tobacco yield was unaffected by CCs in 2017 but lower in some WM treatments in 2018. In this study, tobacco herbicides did not interfere with wheat, cereal rye, or crimson clover establishment, but additional research should determine if these results apply to other environments and soil types. However, when these CC species were terminated 5 to 6 wk before transplanting, they did not consistently contribute to weed control.


2018 ◽  
Vol 32 (3) ◽  
pp. 227-235 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractCover crop acreage has substantially increased over the last few years due to the intent of growers to capitalize on federal conservation payments and incorporate sustainable practices into agricultural systems. Despite all the known benefits, widespread adoption of cover crops still remains limited due to potential cost and management requirements. Cover crop termination is crucial, because a poorly controlled cover crop can become a weed and lessen the yield potential of the current cash crop. A field study was conducted in fall 2015 and 2016 at the Arkansas Agricultural Research and Extension Center in Fayetteville to evaluate preplant herbicide options for terminating cover crops. Glyphosate-containing treatments controlled 97% to 100% of cereal rye and wheat, but glyphosate alone controlled less than 57% of legume cover crops. The most effective way to control hairy vetch, Austrian winterpea, and crimson clover with glyphosate resulted from mixtures of glyphosate with glufosinate, 2,4-D, and dicamba. Higher rates of auxin herbicides improved control in these mixtures. Glufosinate alone or in mixture controlled legume cover crops 81% or more. Paraquat plus metribuzin was effective in terminating both cereal and legume cover crops, with control of cereal cover crops ranging from 87% to 97% and control of legumes ranging from 90% to 96%. None of these herbicides or mixtures adequately controlled rapeseed.


2020 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
Imtiaz Ahmad ◽  
María del Mar Jiménez-Gasco ◽  
Dawn S. Luthe ◽  
Mary E. Barbercheck

Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect pathogens that can establish as endophytes and can benefit their host plant. In field experiments, we observed a positive correlation between the prevalence of M. robertsii and legume cover crops, and a negative relationship with brassicaceous cover crops and with increasing proportion of cereal rye in mixtures. Here, we report the effects of endophytic M. robertsii on three cover crop species under greenhouse conditions. We inoculated seeds of Austrian winter pea (Pisum sativum L., AWP), cereal rye (Secale cereale L.), and winter canola (Brassica napus L.) with conidia of M. robertsii to assess the effects of endophytic colonization on cover crop growth. We recovered M. robertsii from 59%, 46%, and 39% of seed-inoculated AWP, cereal rye, and canola plants, respectively. Endophytic M. robertsii significantly increased height and above-ground biomass of AWP and cereal rye but did not affect chlorophyll content of any of the cover crop species. Among inoculated plants from which we recovered M. robertsii, above-ground biomass of AWP was positively correlated with the proportion of colonized root but not leaf tissue sections. Our results suggest that winter cover crops may help to conserve Metarhizium spp. in annual cropping systems.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Laura Vincent-Caboud ◽  
Léa Vereecke ◽  
Erin Silva ◽  
Joséphine Peigné

Organic farming relies heavily on tillage for weed management, however, intensive soil disturbance can have detrimental impacts on soil quality. Cover crop-based rotational tillage (CCBRT), a practice that reduces the need for tillage and cultivation through the creation of cover crop mulches, has emerged as an alternative weed management practice in organic cropping systems. In this study, CCBRT systems using cereal rye and triticale grain species are evaluated with organic soybean directly seeded into a rolled cover crop. Cover crop biomass, weed biomass, and soybean yields were evaluated to assess the effects of cereal rye and winter triticale cover crops on weed suppression and yields. From 2016 to 2018, trials were conducted at six locations in Wisconsin, USA, and Southern France. While cover crop biomass did not differ among the cereal grain species tested, the use of cereal rye as the cover crop resulted in higher soybean yields (2.7 t ha−1 vs. 2.2 t ha−1) and greater weed suppression, both at soybean emergence (231 vs. 577 kg ha−1 of weed biomass) and just prior to soybean harvest (1178 vs. 1545 kg ha−1). On four out of six sites, cover crop biomass was lower than the reported optimal (<8000 kg ha−1) needed to suppress weeds throughout soybean season. Environmental conditions, in tandem with agronomic decisions (e.g., seeding dates, cultivar, planters, etc.), influenced the ability of the cover crop to suppress weeds regardless of the species used. In a changing climate, future research should focus on establishing flexible decision support tools based on multi-tactic cover crop management to ensure more consistent results with respect to cover crop growth, weed suppression, and crop yields.


Sign in / Sign up

Export Citation Format

Share Document