Effect of Drip-Applied Metam-Sodium andS-Metolachlor on Yellow Nutsedge and Common Purslane in Polyethylene-Mulched Bell Pepper and Tomato

2017 ◽  
Vol 31 (3) ◽  
pp. 421-429 ◽  
Author(s):  
Daniel M. Dayton ◽  
Sushila Chaudhari ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Greg W. Hoyt

Field studies were conducted to determine the effect of metam sodium andS-metolachlor applied through drip irrigation on yellow nutsedge, common purslane, bell pepper, and tomato (injury and yield) in plasticulture. Treatments consisted of weed-free, weedy,S-metolachlor alone at 0.85 kg ha-1, methyl bromide, metam sodium (43, 86, 176, and 358 kg ai ha–1) alone, and metam sodium (43, 86, 176, and 358 kg ai ha–1) followed byS-metolachlor at 0.85 kg ha–1. Metam sodium andS-metolachlor was applied preplant 2 wk before and 2 wk after transplanting (WAT) through drip irrigation, respectively. No injury was observed to bell pepper and tomato from metam sodium alone, or metam sodium fbS-metolachlor treatments. With the exception of yellow nutsedge density 15 WAT in bell pepper, herbicide program did not influence yellow nutsedge and common purslane density at 4 and 6 WAT and bell pepper and tomato yield. At 15 WAT, yellow nutsedge density was lower in treatments that received metam sodium fbS-metolachlor compared to those treatments that only received metam sodium. Drip-applied metam sodium at 176 and 358 kg ha–1in both bell pepper and tomato provided similar control of common purslane, and yellow nutsedge, produced comparable yields, and failed to elicit any negative crop growth responses when compared to MeBr. In conclusion, metam sodium at 176 and 358 kg ha–1fbS-metolachlor 0.85 kg ha–1is an effective MeBr alternative for season long weed control in plasticulture bell pepper and tomato.

2013 ◽  
Vol 27 (3) ◽  
pp. 468-474 ◽  
Author(s):  
Pratap Devkota ◽  
Jason K. Norsworthy ◽  
Ronald Rainey

Methyl bromide (MeBr), classified as a Class I ozone-depleting substance, has been banned for ordinary agricultural uses. Weed control in commercial bell pepper production is complicated by the ban on MeBr and the lack of other available and effective soil fumigants. A field study was conducted to evaluate the effectiveness of allyl isothiocyanate (ITC) and metam sodium (methyl ITC generator) as MeBr alternatives for control of Palmer amaranth, large crabgrass, and yellow nutsedge; and for increasing marketable yields in low-density polyethylene (LDPE) –mulched bell pepper. Allyl ITC was applied at 450, 600, and 750 kg ha−1; metam sodium was applied at 180, 270, and 360 kg ha−1; and MeBr plus chloropicrin (67% and 33%, respectively) was applied at 390 kg ha−1. Allyl ITC and metam sodium did not injure bell pepper. Allyl ITC at 750 kg ha−1or metam sodium at 360 kg ha−1controlled Palmer amaranth (≥ 83%), large crabgrass (≥ 78%), and yellow nutsedge (≥ 80%) comparably to MeBr. Yellow nutsedge tuber density was ≤ 84 tubers m−2in plots treated with the highest rate of allyl ITC and metam sodium and was comparable to the tuber density in MeBr-treated plots. Although allyl ITC at 750 kg ha−1controlled weeds comparable to MeBr, total marketable bell pepper yield with allyl ITC was lower than the yield with MeBr. Conversely, total marketable bell pepper yield with the highest rate of metam sodium (53.5 ton ha−1) was equivalent to the yield (62.5 ton ha−1) in plots treated with MeBr. In conclusion, metam sodium at 360 kg ha−1is an effective MeBr alternative for weed control in LDPE–mulched bell pepper.


HortScience ◽  
2003 ◽  
Vol 38 (1) ◽  
pp. 55-61 ◽  
Author(s):  
S.A. Fennimore ◽  
M.J. Haar ◽  
H.A. Ajwa

The loss of methyl bromide (MB) as a soil fumigant has created the need for new weed management systems for crops such as strawberry (Fragaria ×ananassa Duchesne). Potential alternative chemicals to replace methyl bromide fumigation include 1,3-D, chloropicrin (CP), and metam sodium. Application of emulsified formulations of these fumigants through the drip irrigation system is being tested as an alternative to the standard shank injection method of fumigant application in strawberry production. The goal of this research was to evaluate the weed control efficacy of alternative fumigants applied through the drip irrigation system and by shank injection. The fumigant 1,3-D in a mixture with CP was drip-applied as InLine (60% 1,3-D plus 32% CP) at 236 and 393 L·ha-1 or shank injected as Telone C35 (62% 1,3-D plus 35% CP) at 374 L·ha-1. Chloropicrin (CP EC, 95%) was drip-applied singly at 130 and 200 L·ha-1 or shank injected (CP, 99%) at 317 kg·ha-1. Vapam HL (metam sodium 42%) was drip-applied singly at 420 and 700 L·ha-1. InLine was drip-applied at 236 and 393 L·ha-1, and then 6 d later followed by (fb) drip-applied Vapam HL at 420 and 700 L·ha-1, respectively. CP EC was drip-applied simultaneously with Vapam HL at 130 plus 420 L·ha-1 and as a sequential application at 200 fb 420 L·ha-1, respectively. Results were compared to the commercial standard, MB : CP mixture (67:33) shank-applied at 425 kg·ha-1 and the untreated control. Chloropicrin EC at 200 L·ha-1 and InLine at 236 to 393 L·ha-1 each applied singly controlled weeds as well as MB : CP at 425 kg·ha-1. Application of these fumigants through the drip irrigation systems provided equal or better weed control than equivalent rates applied by shank injection. InLine and CP EC efficacy on little mallow (Malva parviflora L.) or prostrate knotweed (Polygonum aviculare L.) seed buried at the center of the bed did not differ from MB : CP. However, the percentage of weed seed survival at the edge of the bed was often higher in the drip-applied treatments than in the shank-applied treatments, possibly due to the close proximity of the shank-injected fumigant to the edge of the bed. Vapam HL was generally less effective than MB : CP on the native weed population or on weed seed. The use of Vapam HL in combination with InLine or CP EC did not provide additional weed control benefit. Chemical names used: 1,3-dichloropropene (1,3-D); sodium N-methyldithiocarbamate (metam sodium); methyl bromide; trichloro-nitromethane (chloropicrin).


2014 ◽  
Vol 28 (2) ◽  
pp. 377-384 ◽  
Author(s):  
Pratap Devkota ◽  
Jason K. Norsworthy

Isothiocyanates (ITCs) were evaluated as an alternative to methyl bromide (MeBr) for control of Palmer amaranth, large crabgrass, and yellow nutsedge; reduction of tuber density; and increase in marketable tomato yield in low density polyethylene (LDPE)-mulched tomato production. Allyl ITC was applied at 450, 600, and 750 kg ai ha−1; metham sodium (methyl ITC generator) was applied at 180, 270, and 360 kg ai ha−1; and MeBr plus chloropicrin (mixture of MeBr and chloropicrin at 67 : 33%, respectively) was applied at 390 kg ai ha−1. A nontreated weedy check was included for comparison. There was no injury to tomato plants following allyl ITC, metham sodium, or MeBr application. Allyl ITC at 750 kg ha−1or metham sodium at 360 kg ha−1controlled Palmer amaranth ≥ 79%, large crabgrass ≥ 76%, and yellow nutsedge ≥ 80% and was comparable to the weed control with MeBr. Highest rates of allyl ITC and metham sodium reduced yellow nutsedge tuber density (≤ 76 tubers m−2) comparable to the MeBr application. Total marketable tomato yield was ≥ 31.6 t ha−1in plots treated with allyl ITC at 750 kg ha−1or metham sodium at 360 kg ha−1. Marketable tomato yield from the highest rate of allyl ITC or metham sodium were similar to the yield (38.2 t ha−1) with MeBr treatment. Therefore, allyl ITC at 750 kg ha−1and metham sodium at 360 kg ha−1are effective alternatives to MeBr for Palmer amaranth, large crabgrass, and yellow nutsedge control in LDPE-mulched tomato.


2012 ◽  
Vol 26 (4) ◽  
pp. 763-768 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur

Methyl bromide is a common fumigant for effective weed control in polyethylene-mulched vegetable crops. However, the ban on methyl bromide in the United States has created a need to find a suitable alternative. This study investigated the herbicidal efficacy of phenyl isothiocyanate (ITC) as a methyl bromide alternative for weed control in polyethylene-mulched bell pepper during 2006 and 2007. Six rates of phenyl ITC (0, 15, 75, 150, 750, 1,500 kg ha−1) under low-density polyethylene (LDPE) or virtually impermeable film (VIF) mulch were tested against yellow nutsedge, Palmer amaranth, and large crabgrass. Additionally, a standard treatment of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1under LDPE mulch was included for comparison. VIF mulch provided no advantage over LDPE mulch in either improving weed control or marketable yield in bell pepper. Unacceptable pepper injury (≥ 60%) occurred at the highest phenyl ITC rate of 1,500 kg ha−1at 2 WATP in both years, regardless of mulch type. Higher bell pepper injury was observed in 2006 (≥ 36%) than in 2007 (≤ 11%) at 750 kg ha−1of phenyl ITC. The lower injury in 2007 could be attributed to aeration of beds 48 h prior to transplanting. Regardless of mulch type, phenyl ITC at 2,071 (± 197) and 1,655 (± 309) kg ha−1was required to control yellow nutsedge, Palmer amaranth, and large crabgrass equivalent to methyl bromide in 2006 and 2007, respectively. Bell pepper marketable yield at all rates of phenyl ITC was lower than methyl bromide in 2006. In contrast, marketable yield in phenyl ITC at 750–kg ha−1was equivalent to methyl bromide in 2007. It is concluded that phenyl ITC should be applied at least 4.2 times higher rate than methyl bromide for effective weed control, and bed aeration is required to minimize crop injury and yield loss. Additional research is needed to test phenyl ITC in combination with other weed control strategies to obtain effective weed control with acceptable crop safety.


2015 ◽  
Vol 29 (2) ◽  
pp. 284-297 ◽  
Author(s):  
Pratap Devkota ◽  
Jason K. Norsworthy ◽  
Ron Rainey

In the absence of an effective alternative to methyl bromide (MeBr), weeds cause a significant economic loss in bell pepper production. A study was conducted to evaluate the efficacy and economics of PRE followed by (fb) POST-directed (POST-DIR) herbicide programs compared with MeBr for weed control in low-density polyethylene (LDPE) mulched bell pepper production. Imazosulfuron at 0.112, 0.224, and 0.336 kg ai ha−1andS-metolachlor at 1.6 kg ai ha−1were PRE-applied fb POST-DIR applied mixture of trifloxysulfuron + halosulfuron at 0.008 and 0.027 kg ai ha−1, respectively, at 4 wk after transplanting (WATP). The standard MeBr treatment (67 and 33% mixture of MeBr + chloropicrin) was applied at 390 kg ai ha−1. In addition, a weed-free (hand weeding) and a non-treated control were used for comparison.S-metolachlor-containing herbicide program controlled Palmer amaranth ≥ 90%, large crabgrass ≥ 78%, and yellow nutsedge ≥ 90%, which were comparable to MeBr. After POST-DIR herbicide application, bell pepper was injured ≥ 17% with theS-metolachlor-containing herbicide program at 6 WATP; however, the crop later recovered. Marketable bell pepper yield in plots treated withS-metolachlor (≥ 29.9 ton ha−1) was comparable to those treated with MeBr. Economic evaluation of the imazosulfuron herbicide programs demonstrated the loss of ≥ $7,300 ha−1. Conversely, theS-metolachlor-containing herbicide program was profitable with a net return of $9,912 ha−1. In addition, theS-metolachlor herbicide program generated a net profit of $173 ha−1compared to the MeBr application. Therefore, PRE-appliedS-metolachlor fb POST-DIR applied trifloxysulfuron + halosulfuron is a potential alternative to MeBr for weed management in LDPE-mulched bell pepper production given the weed spectrum evaluated in this study.


2011 ◽  
Vol 25 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur ◽  
Jingying Zhang ◽  
Tsehaye Habtom

Methyl bromide has been a key fumigant for broad-spectrum weed control in polyethylene-mulched bell pepper. However, the ozone-depleting nature of methyl bromide has led to its scheduled phaseout from U.S. agriculture. Thus, an effective alternative to methyl bromide is needed. Field trials were conducted in 2007 and 2009 to evaluate the crop response and weed control efficacy of allyl isothiocyanate (ITC) in polyethylene-mulched bell pepper. The experiment included various combinations of two mulch types (low density polyethylene [LDPE] and virtually impermeable film [VIF] mulch) and six rates of allyl isothiocyanate (0, 15, 75, 150, 750, 1,500 kg ha−1). Additionally, a standard treatment of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1 under LDPE mulch was included for comparison. Bell pepper injury was < 3% in all treatments, except 11% injury at 1,500 kg ha−1 allyl isothiocyanate under VIF mulch at 2 wk after transplanting (WATP). VIF mulch did not provide additional weed control and marketable pepper yield over LDPE mulch. Allyl isothiocyanate at 932 (± 127) kg ha−1 controlled yellow nutsedge (90%), Palmer amaranth (97%), and large crabgrass (92%) through 6 WATP and maintained the marketable yield equivalent to methyl bromide treatment. This research demonstrates that allyl ITC under an LDPE mulch can serve as a potential alternative to methyl bromide for weed control in polyethylene-mulched bell pepper.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


Weed Science ◽  
1998 ◽  
Vol 46 (6) ◽  
pp. 698-702 ◽  
Author(s):  
W. Carroll Johnson ◽  
Benjamin G. Mullinix

Field studies were conducted from 1995 to 1997 near Tifton, GA, to determine the benefits of stale seedbed weed control in cucumber. Three stale seedbed management systems—(1) power till stale seedbeds twice (2 ×), (2) glyphosate application immediately after planting, and (3) combination system of stale seedbeds power tilled once 2 wk prior to planting followed by glyphosate application immediately after planting cucumber—were evaluated as main plots. Subplots were weed management systems after planting cucumber: intensive, basic, and cultivation alone. Weed densities were generally greater in 1996 and 1997 than in 1995. Yellow nutsedge was the overall predominant species in 1995 (46 plants m−2), with Florida pusley being the predominant species in 1996 and 1997, at 80 and 124 plants m−2, respectively. Generally, stale seedbeds shallow tilled 2 × had fewer weeds and greater cucumber yields than stale seedbeds treated with glyphosate. Glyphosate did not adequately control emerged Florida pusley on stale seedbeds, resulting in reduced cucumber yield. Clomazone preemergence and bentazon/halosulfuron postemergence were used for broadleaf weed control in the intensive weed management system. These herbicides injured cucumber plants, delayed maturity, and reduced yield. Based on our results, stale seedbeds shallow tilled 2 × can be integrated into cucumber production and provide effective cultural weed control. Furthermore, these systems will replace the need for potentially injurious herbicides.


1994 ◽  
Vol 8 (3) ◽  
pp. 530-535 ◽  
Author(s):  
W. Thomas Lanini ◽  
Michelle Le Strange

Field studies were conducted in 1990 and 1991 at Davis and Five Points, CA to evaluate weed control with napropamide and hand-weeding and the effect on yield and profitability in transplanted bell pepper. Weed cover 8 wk after transplanting averaged less than 10% in plots hand-weeded biweekly for 6 wk after transplanting. Weed cover at harvest was less than 30% in plots hand-weeded at 8 wk after transplanting. Napropamide treatment reduced weed cover at 8 wk after transplanting an average of 34% compared to untreated plots, but differences declined to 14% at harvest. Time required to hand-weed plots was greater if the interval between weeding was 4 instead of 2 wk. The time needed to hand-weed plots was reduced from 38% to 71% by napropamide treatment. When weeds were excluded by hand-weeding for the entire season, bell pepper yielded 25 810 kg/ha and was 4% to 18% higher than other treatments. Net returns were greater for plots that were hand-weeded the entire season or when napropamide was combined with hand-weeding at 4 and 8 wk after transplanting, compared to other treatments.


2017 ◽  
Vol 31 (6) ◽  
pp. 870-876 ◽  
Author(s):  
Jialin Yu ◽  
Nathan S. Boyd

Broadleaves, grasses, and nutsedge species are persistent problems with limited management options for strawberry growers in Florida. Field experiments were conducted in 2015-2016 (year 1) and 2016-2017 (year 2) at the Gulf Coast Research and Education Center in Balm, FL, to evaluate weed control and strawberry tolerance to herbicides applied through the drip irrigation. 2940 g ai ha-1EPTC, 105 g ai ha-1flumioxazin, 570 g ai ha-1fomesafen, 52 g ai ha-1halosulfuron, 3585 g ai ha-1napropamide, oxyfluorfen 560 g ai ha-1, and 1070 g ai ha-1S-metolachlor were applied through a single drip tape at 7 or 14 d prior to transplanting. Halosulfuron was the most injurious herbicide, causing 18 and 46% injury at 35 d after transplanting (DATP) in year 1 when the herbicide was applied 7 and 14 d prior to transplanting, respectively. However, strawberry plants recovered from the initial injury and there was no reduction in total berry yield. None of the other herbicides evaluated elicited significant crop injury nor reduced berry yield. Averaged over application timings, EPTC, fomesafen, and napropamide suppressed yellow nutsedge emergence to 49, 64, and 41% of the nontreated control, respectively. Flumioxazin, fomesafen, and halosulfuron suppressed black medic emergence to 55, 52, and 55% of the nontreated control, respectively. None of the herbicides evaluated adequately suppressed Carolina geranium. Overall, results suggest that the evaluated herbicides with the exception of halosulfuron are safe for use on strawberry and would give growers an alternative management option. Drip-applied herbicides permit application closer to the transplant date and would be helpful as part of a weed control program for weed suppression.


Sign in / Sign up

Export Citation Format

Share Document