Herbicide Options for Control of Palmer Amaranth (Amaranthus palmeri) and Common Waterhemp (Amaranthus rudis) in Double-Crop Soybean

2019 ◽  
Vol 33 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Marshall M. Hay ◽  
Douglas E. Shoup ◽  
Dallas E. Peterson

AbstractDouble-crop soybean after winter wheat is a component of many cropping systems across eastern and central Kansas. Until recently, control of Palmer amaranth and common waterhemp has been both easy and economical with the use of sequential applications of glyphosate in glyphosate-resistant soybean. Many populations of Palmer amaranth and common waterhemp have become resistant to glyphosate. During 2015 and 2016, a total of five field experiments were conducted near Manhattan, Hutchinson, and Ottawa, KS, to assess various non-glyphosate herbicide programs at three different application timings for the control of Palmer amaranth and waterhemp in double-crop soybean after winter wheat. Spring-POST treatments of pyroxasulfone (119 g ai ha–1) and pendimethalin (1065 g ai ha–1) were applied to winter wheat to evaluate residual control of Palmer amaranth and waterhemp. Less than 40% control of Palmer amaranth and waterhemp was observed in both treatments 2 wk after planting (WAP) double-crop soybean. Preharvest treatments of 2,4-D (561 g ae ha–1) and flumioxazin (107 g ai ha–1) were also applied to the winter wheat to assess control of emerged Palmer amaranth and waterhemp. 2,4-D resulted in highly variable Palmer amaranth and waterhemp control, whereas flumioxazin resulted in control similar to PRE treatments that contained paraquat (841 g ai ha–1) plus residual herbicide(s). Excellent control of both species was observed 2 WAP with a PRE paraquat application; however, reduced control of Palmer amaranth and waterhemp was noted 8 WAP due to subsequent emergence. Results indicate that Palmer amaranth and waterhemp control was 85% or greater 8 WAP for PRE treatments that included a combination of paraquat plus residual herbicide(s). PRE treatments that did not include both paraquat and residual herbicide(s) did not provide acceptable control.

2017 ◽  
Vol 31 (3) ◽  
pp. 364-372 ◽  
Author(s):  
Jonathon R. Kohrt ◽  
Christy L. Sprague

Three field experiments were conducted from 2013 to 2015 in Barry County, MI to evaluate the effectiveness of PRE, POST, and one- (EPOS) and two-pass (PRE followed by POST) herbicide programs for management of multiple-resistant Palmer amaranth in field corn. The Palmer amaranth population at this location has demonstrated resistance to glyphosate (Group 9), ALS-inhibiting herbicides (Group 2), and atrazine (Group 5). In the PRE only experiment, the only herbicide treatments that consistently provided ~80% or greater control were pyroxasulfone and the combination of mesotrione +S-metolachlor. However, none of these treatments provided season-long Palmer amaranth control. Only topramezone provided >85% Palmer amaranth control 14 DAT, in the POST only experiment. Of the 19 herbicide programs studied all but three programs provided ≥88% Palmer amaranth control at corn harvest. Herbicide programs that did not control Palmer amaranth relied on only one effective herbicide site of action and in one case did not include a residual herbicide POST for late-season Palmer amaranth control. Some of the EPOS treatments were effective for season-long Palmer amaranth control; however, application timing and the inclusion of a residual herbicide component will be critical for controlling Palmer amaranth. The programs that consistently provided the highest levels of season-long Palmer amaranth control were PRE followed by POST herbicide programs that relied on a minimum of two effective herbicide sites of action and usually included a residual herbicide for late-season control.


2017 ◽  
Vol 31 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Debalin Sarangi ◽  
Lowell D. Sandell ◽  
Greg R. Kruger ◽  
Stevan Z. Knezevic ◽  
Suat Irmak ◽  
...  

The evolution of glyphosate and acetolactate synthase (ALS) inhibitor-resistant common waterhemp in the Midwestern United States has reduced the number of effective POST herbicide options for management of this problem weed in glyphosate-resistant soybean. Moreover, common waterhemp emerges throughout the crop growing season, justifying the need to evaluate herbicide programs that provide season-long control. The objectives of this study were to compare POST-only and PRE followed by (fb) POST herbicide programs for control of glyphosate-resistant common waterhemp in glyphosate-resistant soybean. Field experiments were conducted in 2013 and 2014 in Dodge County, NE, in a field infested with glyphosate-resistant common waterhemp. Programs containing PRE herbicides resulted in ≥83% control of common waterhemp and densities of ≤35 plantsm–2at 21 d after PRE (DAPRE). Post-only herbicide programs resulted in <70% control and densities of 107 to 215 plants m–2at 14 d after early-POST (DAEPOST) treatment. PRE fb POST herbicide programs, including saflufenacil plus imazethapyr plus dimethenamid-P, sulfentrazone plus cloransulam, orS-metolachlor plus metribuzin, fb fomesafen plus glyphosate;S-metolachlor plus fomesafen fb acifluorfen plus glyphosate resulted in >90% control of glyphosate-resistant common waterhemp throughout the growing season, reduced density to ≤7plantsm–2, ≥92% biomass reduction, and soybean yield >2,200kg ha–1. Averaged across herbicide programs, common waterhemp control was 84%, and density was 15 plants m–2with PRE fb POST herbicide programs compared with 42% control, and density of 101 plants m–2with POST-only herbicide programs at harvest. Results of this study indicated that PRE fb POST herbicide programs with effective modes of action exist for season-long control of glyphosate-resistant common waterhemp in glyphosate-resistant soybean.


2017 ◽  
Vol 31 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Amit J. Jhala ◽  
Lowell D. Sandell ◽  
Debalin Sarangi ◽  
Greg R. Kruger ◽  
Steven Z. Knezevic

Glyphosate-resistant (GR) common waterhemp has become a significant problem weed in Nebraska and several Midwestern states. Several populations of GR common waterhemp are also resistant to acetolactate synthase (ALS)-inhibiting herbicides, making them difficult to control with POST herbicides in GR soybean. Glufosinate-resistant (GFR) soybean is an alternate system for controlling GR common waterhemp, justifying the need for evaluating glufosinate-based herbicide programs. The objectives of this study were to compare POST-only herbicide programs (including one-pass and two-pass POST programs) with PRE followed by (fb) POST herbicide programs for control of GR common waterhemp in GFR soybean and their effect on common waterhemp density, biomass, and soybean yield. Field experiments were conducted in 2013 and 2014 near Fremont, NE in a grower’s field infested with GR common waterhemp. Glufosinate applied early- and late-POST provided 76% control of GR common waterhemp at 14 d after late-POST (DALPOST) compared with 93% control with a PRE fb POST program when averaged across treatments. The PRE application of chlorimuron plus thifensulfuron plus flumioxazin,S-metolachlor plus fomesafen or metribuzin, saflufenacil plus dimethenamid-P fb glufosinate provided ≥95% control of common waterhemp throughout the growing season, reduced common waterhemp density to ≤2.0 plants m─2, caused ≥94% biomass reduction, and led to 1,984 to 2,210 kg ha─1soybean yield. Averaged across treatments, the PRE fb POST program provided 82% common waterhemp control at soybean harvest, reduced density to 23 plants m─2at 14 DALPOST, and caused 86% biomass reduction and 1,803 kg ha─1soybean yield compared with 77% control, 99 plants m─2, 53% biomass reduction, and 1,190 kg ha─1yield with POST-only program. It is concluded that PRE fb POST programs with multiple effective modes of action are available for control of GR common waterhemp in GFR soybean.


2017 ◽  
Vol 31 (5) ◽  
pp. 641-650 ◽  
Author(s):  
John M. Wallace ◽  
William S. Curran ◽  
Steven B. Mirsky ◽  
Matthew R. Ryan

In the mid-Atlantic region, there is increasing interest in the use of intercropping strategies to establish cover crops in corn cropping systems. However, intercropping may be limited by potential injury to cover crops from residual herbicide programs. Field experiments were conducted from 2013 to 2015 at Pennsylvania, Maryland, and New York locations (n=8) to evaluate the effect of common residual corn herbicides on interseeded red clover and annual ryegrass. Cover crop establishment and response to herbicide treatments varied across sites and years.S-metolachlor, pyroxasulfone, pendimethalin, and dimethenamid-Preduced annual ryegrass biomass relative to the nontreated check, whereas annual ryegrass biomass in acetochlor treatments was no different compared with the nontreated check. The rank order of observed annual ryegrass biomass reduction among chloroacetamide herbicides wasS-metolachlor>pyroxasulfone>dimethenamid-P>acetochlor. Annual ryegrass biomass was not reduced by any of the broadleaf control herbicides. Mesotrione reduced red clover biomass 80% compared to the nontreated check. No differences in red clover biomass were observed between saflufenacil, rimsulfuron and atrazine treatments compared to the nontreated check. Red clover was not reduced by any of the grass control herbicides. This research suggests that annual ryegrass and red clover can be successfully interseeded in silt loam soils of Pennsylvania following use of several shorter-lived residual corn herbicides, but further research is needed in areas with soil types other than silt loam or outside of the mid-Atlantic cropping region.


2021 ◽  
pp. 1-23
Author(s):  
Jasmine Mausbach ◽  
Suat Irmak ◽  
Debalin Sarangi ◽  
John Lindquist ◽  
Amit J. Jhala

Abstract Palmer amaranth is the most problematic and troublesome weed in agronomic cropping systems in the United States. Acetolactate synthase (ALS) inhibitor- and glyphosate-resistant (GR) Palmer amaranth has been confirmed in Nebraska and it is widespread in several counties. Soybean resistant to isoxaflutole/glufosinate/glyphosate has been developed that provides additional herbicide site of action for control of herbicide-resistant weeds. The objectives of this study were to evaluate herbicide programs for control of ALS inhibitor/GR Palmer amaranth and their effect on Palmer amaranth density and biomass, as well as soybean injury and yield in isoxaflutole/glufosinate/glyphosate-resistant soybean. Field experiments were conducted in a grower’s field infested with ALS inhibitor- and GR Palmer amaranth near Carleton, Nebraska, in 2018 and 2019. Isoxaflutole applied alone or mixed with sulfentrazone/pyroxasulfone, flumioxazin/pyroxasulfone, or imazethapyr/saflufenacil/pyroxasulfone provided similar control (86%-99%) of Palmer amaranth 21 d after PRE (DAPRE). At 14 d after early-POST (DAEPOST), isoxaflutole applied PRE and PRE followed by (fb) POST controlled Palmer amaranth 10% to 63% compared to 75% to 96% control with glufosinate applied EPOST in both years. A PRE herbicide fb glufosinate controlled Palmer amaranth 80% to 99% 21 d after late-POST (DALPOST) in 2018 and reduced density 89% to 100% in 2018 and 58% to 100% in 2019 at 14 DAEPOST. No soybean injury was observed from any of the herbicide programs tested in this study. Soybean yield in 2019 was relatively higher due to higher precipitation compared with 2018 with generally no differences between herbicide programs. This research indicates that herbicide programs are available for effective control of ALS inhibitor/GR Palmer amaranth in isoxaflutole/glufosinate/glyphosate-resistant soybean.


Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 469-477 ◽  
Author(s):  
Loretta M. Ortiz-Ribbing ◽  
Kenny R. Glassman ◽  
Gordon K. Roskamp ◽  
Steven G. Hallett

Common waterhemp (Amaranthus rudis) and pigweeds (Amaranthus spp.) are troublesome weeds in many cropping systems and have evolved resistance to several herbicides. Field trials to further develop Microsphaeropsis amaranthi and Phomopsis amaranthicola as bioherbicides for control of waterhemp and pigweeds were conducted to test the effectiveness of these organisms in irrigated and nonirrigated pumpkin and soybean plots over 2 years at three locations in western Illinois. The bioherbicide was applied with lecithin and vegetable oil at 187 liters ha–1 in 2008 and 374 liters ha–1 in 2009. Treatments included spore suspensions of M. amaranthi and P. amaranthicola alone, a mixture of both organisms, and sequential treatments of the organisms with halosulfuron-methyl (Sandea Herbicide) in pumpkin or glyphosate (Roundup Original Max Herbicide) in soybean. Bioherbicide effectiveness was estimated at approximately 7 and 14 days after treatment, as disease incidence, disease severity, percent weed control, and weed biomass reduction. Significant reductions in weed biomass occurred in treatments with one or both of the fungal organisms, and potential exists to tank mix M. amaranthi with halosulfuron-methyl. Leaf surface moisture and air temperatures following application may account for inconsistencies in field results between year and locations. These fungal organisms show potential as bioherbicides for weeds in the genus Amaranthus.


2020 ◽  
pp. 1-8
Author(s):  
Chandrima Shyam ◽  
Parminder S. Chahal ◽  
Amit J. Jhala ◽  
Mithila Jugulam

Abstract Glyphosate-resistant (GR) Palmer amaranth is a problematic, annual broadleaf weed in soybean production fields in Nebraska and many other states in the United States. Soybean resistant to 2,4-D, glyphosate, and glufosinate (Enlist E3TM) has been developed and was first grown commercially in 2019. The objectives of this research were to evaluate the effect of herbicide programs applied PRE, PRE followed by (fb) late-POST (LPOST), and early-POST (EPOST) fb LPOST on GR Palmer amaranth control, density, and biomass reduction, soybean injury, and yield. Field experiments were conducted near Carleton, NE, in 2018, and 2019 in a grower’s field infested with GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean. Sulfentrazone + cloransulam-methyl, imazethapyr + saflufenacil + pyroxasulfone, and chlorimuron ethyl + flumioxazin + metribuzin applied PRE provided 84% to 97% control of GR Palmer amaranth compared with the nontreated control 14 d after PRE. Averaged across herbicide programs, PRE fb 2,4-D and/or glufosinate, and sequential application of 2,4-D or glufosinate applied EPOST fb LPOST resulted in 92% and 88% control of GR Palmer amaranth, respectively, compared with 62% control with PRE-only programs 14 d after LPOST. Reductions in Palmer amaranth biomass followed the same trend; however, Palmer amaranth density was reduced 98% in EPOST fb LPOST programs compared with 91% reduction in PRE fb LPOST and 76% reduction in PRE-only programs. PRE fb LPOST and EPOST fb LPOST programs resulted in an average soybean yield of 4,478 and 4,706 kg ha−1, respectively, compared with 3,043 kg ha−1 in PRE-only programs. Herbicide programs evaluated in this study resulted in no soybean injury. The results of this research illustrate that herbicide programs are available for the management of GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean.


2009 ◽  
Vol 23 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Travis R. Legleiter ◽  
Kevin W. Bradley ◽  
Raymond E. Massey

Field experiments were conducted in Platte County, Missouri, during 2006 and 2007 to evaluate PRE, POST, and PRE followed by (fb) POST herbicide programs for the control of glyphosate-resistant waterhemp in soybean. All PRE fb POST treatments resulted in at least 66 and 70% control of glyphosate-resistant waterhemp in 2006 and 2007, respectively. Control of glyphosate-resistant waterhemp was less than 23% with lactofen and acifluorfen in 2006, but at least 64% in 2007. Variability in control likely resulted from differences in trial locations and a population of protoporphyrinogen oxidase (PPO)–resistant waterhemp at the Platte County site in 2006 compared with 2007. In both years, glyphosate resulted in less than 23% control of glyphosate-resistant waterhemp and provided the least control of all herbicide programs. Programs containing PRE herbicides resulted in waterhemp densities of less than 5 plants/m2, whereas the POST glyphosate treatment resulted in 38 to 70 plants/m2. Waterhemp seed production was reduced at least 78% in all PRE fb POST programs, from 55 to 71% in POST programs containing lactofen and acifluorfen and by only 21% in the POST glyphosate treatment. Soybean yields corresponded to the level of waterhemp control achieved in both years, with the lowest yields resulting from programs that provided poorest waterhemp control. PRE applications ofS-metolachlor plus metribuzin provided one of the highest net incomes in both years and resulted in $271 to $340/ha greater net income than the glyphosate-only treatment. Collectively, the results from these experiments illustrate the effectiveness of PRE herbicides for the control of glyphosate-resistant waterhemp in glyphosate-resistant soybean and the inconsistency of PPO-inhibiting herbicides or PPO-inhibiting herbicide combinations for the control of waterhemp populations with multiple resistance to glyphosate and PPO-inhibiting herbicides.


2016 ◽  
Vol 30 (2) ◽  
pp. 366-376 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

Two separate field experiments were conducted over a 2-yr period in Fayetteville, AR, during 2012 and 2013 to (1) evaluate POST herbicide programs utilizing a premixture of dimethylamine (DMA) salt of glyphosate + choline salt of 2,4-D in a soybean line resistant to 2,4-D, glyphosate, and glufosinate and (2) determine efficacy of herbicide programs that begin with PRE residual herbicides followed by POST applications of 2,4-D choline + glyphosate DMA on glyphosate-resistant Palmer amaranth. In the first experiment, POST applications alone that incorporated the use of residual herbicides with the glyphosate + 2,4-D premixture provided 93 to 99% control of Palmer amaranth at the end of the season. In the second experiment, the use of flumioxazin, flumioxazin + chlorimuron methyl, S-metolachlor + fomesafen, or sulfentrazone + chloransulam applied PRE provided 94 to 98% early-season Palmer amaranth control. Early-season control helped maintain a high level of Palmer amaranth control throughout the growing season, in turn resulting in fewer reproductive Palmer amaranth plants present at soybean harvest compared to most other treatments. Although no differences in soybean yield were observed among treated plots, it was evident that herbicide programs should begin with PRE residual herbicides followed by POST applications of glyphosate + 2,4-D mixed with residual herbicides to minimize late-season escapes and reduce the likelihood of contributions to the soil seedbank. Dependent upon management decisions, the best stewardship of this technology will likely rely on the use multiple effective mechanisms of action incorporated into a fully integrated weed management system.


2004 ◽  
Vol 18 (2) ◽  
pp. 332-340 ◽  
Author(s):  
Douglas E. Shoup ◽  
Kassim Al-Khatib

Field experiments were conducted in 2001 and 2002 to evaluate the efficacy of herbicides on protoporphyrinogen oxidase (protox, EC 1.3.3.4) inhibitor–resistant common waterhemp in corn and soybean. All corn herbicides tested gave greater than 90% common waterhemp control by 8 wk after postemergence herbicide treatment (WAPT). In soybean, common waterhemp control was less than 40% by 8 WAPT with postemergence protox-inhibiting herbicides lactofen and acifluorfen. However, preemergence protox-inhibiting herbicides sulfentrazone and flumioxazin gave greater than 85% common waterhemp control in both years. The greatest common waterhemp control in soybean was with glyphosate alone, alachlor + metribuzin, alachlor followed by (fb) glyphosate, and S-metolachlor + metribuzin fb glyphosate.


Sign in / Sign up

Export Citation Format

Share Document