Thiolene- and Polycaprolactone Methacrylate-Based Polymerized High Internal Phase Emulsion (PolyHIPE) Scaffolds for Tissue Engineering

2021 ◽  
Author(s):  
Betül Aldemir Dikici ◽  
Atra Malayeri ◽  
Colin Sherborne ◽  
Serkan Dikici ◽  
Thomas Paterson ◽  
...  
2016 ◽  
Vol 4 (3) ◽  
pp. 450-460 ◽  
Author(s):  
Archana C. Nalawade ◽  
Ravindra V. Ghorpade ◽  
Sadiqua Shadbar ◽  
Mohammed Shadbar Qureshi ◽  
N. N. Chavan ◽  
...  

Synthesis of superporous hydrogels as tissue engineering scaffolds via inverse high internal phase emulsion (i-HIPE) polymerization.


2012 ◽  
Vol 77 ◽  
pp. 172-177 ◽  
Author(s):  
Pornsri Pakeyangkoon ◽  
Rathanawan Magaraphan ◽  
Pomthong Malakul ◽  
Manit Nithitanakul

Atmospheric pressure plasma treatment was used to improve hydrophilic properties and scaffold/cell interaction of poly(S/EGDMA)polyHIPE highly porous foam, prepared from poly(styrene/ethylene glycol dimethacrylate) using high internal phase emulsion technique. With our synthesis procedure and surface treatment, this bioactive material, featuring highly porous structure and good mechanical strength, can be applied as a scaffold for tissue engineering applications. The treatment time and external plasma parameters were investigated in regards to the polyHIPE foam surface’s appropriate for fibroblast implantation. The changes in surface properties were characterized by contact angle measurement, showing that the exposure to air-plasma induced polyHIPE foam with hydrophilic surfaces, as observed by a decrease in contact angle degree. Enhancement of the interaction between the polyHIPE foam and the L929 fibroblast-like cells would imply the hydrophilic improvement of the polyHIPE foam surface due to the polar-like property of the biofluid cell medium.


2020 ◽  
Vol 138 (11) ◽  
pp. 50019
Author(s):  
Xuehui Gong ◽  
Boran Zhao ◽  
Ica Manas‐Zloczower ◽  
Donald L. Feke

RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


2019 ◽  
Vol 10 (9) ◽  
pp. 5446-5460 ◽  
Author(s):  
Chi Yan ◽  
David Julian McClements ◽  
Liqiang Zou ◽  
Wei Liu

A high internal phase emulsion (HIPE) was firstly fabricated with octenyl succinic anhydride modified starch through simple shear dispersion.


2014 ◽  
Vol 884-885 ◽  
pp. 186-189 ◽  
Author(s):  
San Zhu ◽  
Xiao Gang Luo ◽  
Li Bin Ma ◽  
Ya Nan Xue ◽  
Ning Cai ◽  
...  

Novel composite resins with dual absorption properties of water and oil are prepared by the polymerization of high internal phase emulsion (HIPEs) with n-butyl methacrylate as the external phase monomer and acrylamide as the internal phase monomer. The subsequent polymerization leads to the formation of water and oil dual-absorption composite resins. The morphology of porous structure and microcosmic phase separation after water/oil uptake is observed by scanning electron microscopy (SEM). The water and oil absorbency strongly depend on composition. The composites with saturated water uptake could absorb the chloroform again but cant absorb water if saturated with chloroform first. And the resins exhibit great reusability, keeping almost constant absorbency. The present methodology could be a potential approach to obtain amphiphilic composites, which possess potential applications in the bioengineering, medical and industrial fields.


Sign in / Sign up

Export Citation Format

Share Document