Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi

2021 ◽  
Vol 55 (8) ◽  
pp. 4831-4841
Author(s):  
Jun Yan ◽  
Jingjing Wang ◽  
Manuel I. Villalobos Solis ◽  
Huijuan Jin ◽  
Karuna Chourey ◽  
...  

2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Olivia Molenda ◽  
Shuiquan Tang ◽  
Elizabeth A. Edwards

Dehalococcoides mccartyi strain WBC-2 dechlorinates carcinogen vinyl chloride to ethene in the West Branch Canal Creek (WBC-2) microbial consortium used for bioaugmentation. We assembled and closed the complete genome sequence of this prokaryote using metagenomic sequencing from an enrichment culture.



Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 405
Author(s):  
Edoardo Dell’Armi ◽  
Marco Zeppilli ◽  
Bruna Matturro ◽  
Simona Rossetti ◽  
Marco Petrangeli Papini ◽  
...  

Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants due to their improper use in several industrial activities. Specialized microorganisms are able to perform the reductive dechlorination (RD) of high-chlorinated CAHs such as perchloroethylene (PCE), while the low-chlorinated ethenes such as vinyl chloride (VC) are more susceptible to oxidative mechanisms performed by aerobic dechlorinating microorganisms. Bioelectrochemical systems can be used as an effective strategy for the stimulation of both anaerobic and aerobic microbial dechlorination, i.e., a biocathode can be used as an electron donor to perform the RD, while a bioanode can provide the oxygen necessary for the aerobic dechlorination reaction. In this study, a sequential bioelectrochemical process constituted by two membrane-less microbial electrolysis cells connected in series has been, for the first time, operated with synthetic groundwater, also containing sulphate and nitrate, to simulate more realistic process conditions due to the possible establishment of competitive processes for the reducing power, with respect to previous research made with a PCE-contaminated mineral medium (with neither sulphate nor nitrate). The shift from mineral medium to synthetic groundwater showed the establishment of sulphate and nitrate reduction and caused the temporary decrease of the PCE removal efficiency from 100% to 85%. The analysis of the RD biomarkers (i.e., Dehalococcoides mccartyi 16S rRNA and tceA, bvcA, vcrA genes) confirmed the decrement of reductive dechlorination performances after the introduction of the synthetic groundwater, also characterized by a lower ionic strength and nutrients content. On the other hand, the system self-adapted the flowing current to the increased demand for the sulphate and nitrate reduction, so that reducing power was not in defect for the RD, although RD coulombic efficiency was less.



Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1949
Author(s):  
Edoardo Masut ◽  
Alessandro Battaglia ◽  
Luca Ferioli ◽  
Anna Legnani ◽  
Carolina Cruz Viggi ◽  
...  

In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.



2017 ◽  
Vol 51 (3) ◽  
pp. 1626-1634 ◽  
Author(s):  
Siavash Atashgahi ◽  
Yue Lu ◽  
Javier Ramiro-Garcia ◽  
Peng Peng ◽  
Farai Maphosa ◽  
...  


2007 ◽  
Vol 7 (1 & 2) ◽  
pp. 68
Author(s):  
M. Gozan ◽  
A. Mueller ◽  
A. Tiehm

Sequential anaerobic-aerobic barrier is a novel concept for groundwater bioremediation. Trichloroethene (TCE), monochlorobenzene (MCB), and benzene (BZ) were used as model contaminants representing contaminant cocktails frequently found in the contaminated subsurface. The autochthonous microflora from a contaminated field was inoculated to eliminate model contaminants in a set of sequential anaerobic–aerobic granulated activated carbon (GAC) columns and batch studies. In the anaerobic column, the TCE was reductively dechlorinated through cis-dichloroethene (cis-DCE), vinyl chloride (VC), and ethene (ETH). Ethanol and sucrose as auxiliary substrates were added to donate electrons. In the second stage, MCB, BZ, and the lower chlorinated metabolites of TCE degradation, i.e. cis-Dichloroethene (cisDCE) and vinyl chloride (VC), were oxidatively degraded with addition of hydrogen peroxide and nitrate. This paper examines the influence of auxiliary substrates on the biological degradation of model pollutants. In the anaerobic barrier, the auxiliary substrates supply should be maintained low but stoichiometrically adequate for supporting reductive dechlorination. Supplying higher amount of auxiliary substrates provoked competitive reactions in anaerobic conditions, such as sulfate reduction and methanogenesis. If the auxiliary substrates are not utilized completely in the anaerobic phase, the remaining compounds flow into the aerobic phase. This led to unwanted conditions, i.e. oxidation of auxiliary substrates instead of pollutant elimination, and a higher consumption of electron acceptors. In the aerobic barrier, in particular, ethene proved to be a suitable auxiliary substrate for cometabolic degradation of cisDCE.



2009 ◽  
Vol 43 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Y. Abe ◽  
R. Aravena ◽  
J. Zopfi ◽  
O. Shouakar-Stash ◽  
E. Cox ◽  
...  


2002 ◽  
Vol 2 (2) ◽  
pp. 51-58 ◽  
Author(s):  
A. Tiehm ◽  
M. Gozan ◽  
A. Müller ◽  
H. Schell ◽  
H. Lorbeer ◽  
...  

The aim of this study is to develop a long lasting, sequential anaerobic/aerobic biological activated carbon barrier. In the biobarrier, pollutant adsorption on granular activated carbon (GAC) and biodegradation occur simultaneously. Trichloroethene (TCE), chlorobenzene (CB), and benzene were used as model pollutants. In the first barrier, that was operated under anaerobic conditions with sucrose and ethanol as auxiliary substrates, TCE was completely converted to lower chlorinated metabolites, predominantly cis-dichloroethene (cis-DCE). The reductive dechlorination process was stable for about 300 d, although the concomitant sulphate-reducing and methanogenic processes varied considerably. In the second barrier, that was operated with addition of hydrogen peroxide and nitrate, dechlorination was limited by a lack of oxygen and restricted mainly to CB biodegradation. Additional aerobic batch tests revealed that the metabolites of anaerobic TCE dechlorination, i.e. cis-DCE and vinyl chloride, were oxidatively dechlorinated in the presence of suitable auxiliary substrates such as ethene, CB, benzene, or sucrose and ethanol. During periods of low biological activity, elimination of TCE and CB occurred by adsorption in the GAC barriers. The pre-sorbed pollutants were available for subsequent biodegradation resulting in a bioregeneration of the activated carbon barriers.



2012 ◽  
Vol 78 (18) ◽  
pp. 6630-6636 ◽  
Author(s):  
Jun Yan ◽  
Kirsti M. Ritalahti ◽  
Darlene D. Wagner ◽  
Frank E. Löffler

ABSTRACTDehalococcoides mccartyistrains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems.Dehalococcoideslacks the ability forde novocorrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B12) for growth. In contrast,Geobacter lovleyi, which dechlorinates tetrachloroethene tocis-1,2-dichloroethene (cis-DCE), and the nondechlorinating speciesGeobacter sulfurreducenshave complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium.G. lovleyi-D. mccartyistrain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, andcis-DCE was dechlorinated to vinyl chloride and ethene concomitant withDehalococcoidesgrowth. In contrast, negligible increase inDehalococcoides16S rRNA gene copies and insignificant dechlorination occurred inG. sulfurreducens-D. mccartyistrain BAV1 or strain FL2 cocultures. Apparently,G. lovleyiproduces a cobamide that complementsDehalococcoides' nutritional requirements, whereasG. sulfurreducensdoes not. Interestingly,Dehalococcoidesdechlorination activity and growth could be restored inG. sulfurreducens-Dehalococcoidescocultures by adding 10 μM 5′,6′-dimethylbenzimidazole. Observations made with theG. sulfurreducens-Dehalococcoidescocultures suggest that the exchange of the lower ligand generated a cobalamin, which supportedDehalococcoidesactivity. These findings have implications forin situbioremediation and suggest that the corrinoid metabolism ofDehalococcoidesmust be understood to faithfully predict, and possibly enhance, reductive dechlorination activities.



2005 ◽  
Vol 39 (17) ◽  
pp. 6777-6785 ◽  
Author(s):  
Elliot Ennis ◽  
Ralph Reed ◽  
Mark Dolan ◽  
Lewis Semprini ◽  
Jonathan Istok ◽  
...  


2004 ◽  
Vol 70 (10) ◽  
pp. 6347-6351 ◽  
Author(s):  
Rosa Krajmalnik-Brown ◽  
Tina Hölscher ◽  
Ivy N. Thomson ◽  
F. Michael Saunders ◽  
Kirsti M. Ritalahti ◽  
...  

ABSTRACT Dehalococcoides sp. strain BAV1 couples growth with the reductive dechlorination of vinyl chloride (VC) to ethene. Degenerate primers targeting conserved regions in reductive dehalogenase (RDase) genes were designed and used to PCR amplify putative RDase genes from strain BAV1. Seven unique RDase gene fragments were identified. Transcription analysis of VC-grown BAV1 cultures suggested that bvcA was involved in VC reductive dechlorination, and the complete sequence of bvcA was obtained. bvcA was absent in Dehalococcoides isolates that failed to respire VC, yet was detected in four of eight VC-respiring mixed cultures.



Sign in / Sign up

Export Citation Format

Share Document