Vertical Distributions of Primary and Secondary Aerosols in Urban Boundary Layer: Insights into Sources, Chemistry, and Interaction with Meteorology

2021 ◽  
Vol 55 (8) ◽  
pp. 4542-4552
Author(s):  
Lu Lei ◽  
Yele Sun ◽  
Bin Ouyang ◽  
Yanmei Qiu ◽  
Conghui Xie ◽  
...  
2021 ◽  
Author(s):  
Hong Ren ◽  
Wei Hu ◽  
Lianfang Wei ◽  
Siyao Yue ◽  
Jian Zhao ◽  
...  

Abstract. Secondary organic aerosols (SOA) play a significant role in atmospheric chemistry. However, little is known about the vertical profiles of SOA in the urban boundary layer (UBL). This gap in the knowledge constrains the SOA simulation in chemical transport models. Here, we synchronously collected aerosol samples at 8 m, 120 m and 260 m based on a 325-m meteorological tower in urban Beijing from August 15th to September 10th, 2015. Strict emission controls were implemented during this period for the 2015 China Victory Day Parade. The sum of biogenic SOA tracers increased with height. The fraction of SOA from isoprene oxidation increased, whereas the fraction of monoterpene and sesquiterpene SOA decreased with height. The 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), one tracer of anthropogenic SOA from toluene oxidation, also increased with height. The complicated vertical profiles of SOA tracers highlighted the needs to measure SOA within the UBL. The sum of estimated secondary organic carbon (SOC) ranged from 341 to 673 ngC m−3. The increase in the SOC fraction from isoprene and toluene with height was found to be more related to regional transport whereas the decrease in the SOC from monoterpene and sesquiterpene with height was more subject to local emissions. Emission controls during the parade reduced SOC by 4–35 % with toluene SOC decreasing more than the other SOC. This study demonstrates that vertical distributions of SOA within the UBL are complex, and the vertical profiles of SOA concentrations and sources should be considered in the future field and modelling studies.


2021 ◽  
Vol 21 (17) ◽  
pp. 12949-12963
Author(s):  
Hong Ren ◽  
Wei Hu ◽  
Lianfang Wei ◽  
Siyao Yue ◽  
Jian Zhao ◽  
...  

Abstract. Secondary organic aerosol (SOA) plays a significant role in atmospheric chemistry. However, little is known about the vertical profiles of SOA in the urban boundary layer (UBL). This knowledge gap constrains the SOA simulation in chemical transport models. Here, the aerosol samples were synchronously collected at 8, 120, and 260 m based on a 325 m meteorological tower in Beijing from 15 August to 10 September 2015. Strict emission controls were implemented during this period for the 2015 China Victory Day parade. Here, we observed that the total concentration of biogenic SOA tracers increased with height. The fraction of SOA from isoprene oxidation increased with height, whereas the fractions of SOA from monoterpenes and sesquiterpenes decreased, and 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a tracer of anthropogenic SOA from toluene oxidation, also increased with height. The complicated vertical profiles of SOA tracers highlighted the need to characterize SOA within the UBL. The mass concentration of estimated secondary organic carbon (SOC) ranged from 341 to 673 ng C m−3. The increase in the estimated SOC fractions from isoprene and toluene with height was found to be more related to regional transport, whereas the decrease in the estimated SOC from monoterpenes and sesquiterpene with height was more subject to local emissions. Emission controls during the parade reduced SOC by 4 %–35 %, with toluene SOC decreasing more than the other SOC. This study demonstrates that vertical distributions of SOA within the UBL are complex, and the vertical profiles of SOA concentrations and sources should be considered in field and modeling studies in the future.


Tellus B ◽  
2021 ◽  
Vol 73 (1) ◽  
pp. 1-26
Author(s):  
Piotr Sekuła ◽  
Anita Bokwa ◽  
Zbigniew Ustrnul ◽  
Mirosław Zimnoch ◽  
Bogdan Bochenek

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 610
Author(s):  
Yu Shi ◽  
Lei Liu ◽  
Fei Hu ◽  
Guangqiang Fan ◽  
Juntao Huo

To investigate the evolution of the nocturnal boundary layer (NBL) and its impacts on the vertical distributions of pollutant particulates, a combination of in situ observations from a large tethered balloon, remote sensing instruments (aerosol lidar and Doppler wind lidar) and an atmospheric environment-monitoring vehicle were utilized. The observation site was approximately 100 km southwest of Beijing, the capital of China. Results show that a considerable proportion of pollutant particulates were still suspended in the residual layer (RL) (e.g., the nitrate concentration reached 30 μg m−3) after sunset. The NBL height calculated by the aerosol lidar was closer to the top of the RL before midnight because of the pollutants stored aloft in the RL and the shallow surface inversion layer; after midnight, the NBL height was more consistent with the top of the surface inversion layer. As the convective mixing layer gradually became established after sunrise the following day, the pollutants stored in the nocturnal RL of the preceding night were entrained downward into the mixing layer. The early morning PM2.5 concentration near 700 m in the RL on 20 December decreased by 83% compared with the concentration at 13:34 on 20 December at the same height. The nitrate concentration also decreased significantly in the RL, and the mixing down of nitrate from the RL could contribute about 37% to the nitrate in the mixing layer. Turbulence activities still existed in the RL with the bulk Richardson number (Rb) below the threshold value. The corresponding increase in PM2.5 was likely to be correlated with the weak turbulence in the RL in the early morning.


2018 ◽  
Vol 131 (5) ◽  
pp. 1235-1248 ◽  
Author(s):  
Meng Huang ◽  
Zhiqiu Gao ◽  
Shiguang Miao ◽  
Fei Chen

2021 ◽  
Author(s):  
Qiaorong Xie ◽  
Sihui Su ◽  
Shuang Chen ◽  
Qiang Zhang ◽  
Siyao Yue ◽  
...  

Our study provides unique information on the vertical profiles and size distribution of urban organic aerosols by FT-ICR MS.


2019 ◽  
Vol 11 (13) ◽  
pp. 1590 ◽  
Author(s):  
Ruijun Dang ◽  
Yi Yang ◽  
Xiao-Ming Hu ◽  
Zhiting Wang ◽  
Shuwen Zhang

The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weather prediction. Aerosol lidar is a powerful remote sensing instrument frequently used to retrieve the ABLH through detecting the vertical distributions of aerosol concentration. Presently available methods for ABLH determination from aerosol lidar are summarized in this review, including a lot of classical methodologies as well as some improved versions of them. Some new recently developed methods applying advanced techniques such as image edge detection, as well as some new methods based on multi-wavelength lidar systems, are also summarized. Although a lot of techniques have been proposed and have already given reasonable results in several studies, it is impossible to recommend a technique which is suitable in all atmospheric scenarios. More accurate instantaneous ABLH from robust techniques is required, which can be used to estimate or improve the boundary layer parameterization in the numerical model, or maybe possible to be assimilated into the weather and environment models to improve the simulation or forecast of weather and air quality in the future.


Sign in / Sign up

Export Citation Format

Share Document