Systematic Experimental Investigations and Modeling of the Heat Transfer in Additively Manufactured Periodic Open Cellular Structures with Diamond Unit Cell

Author(s):  
Giulia Littwin ◽  
Susanne Röder ◽  
Hannsjörg Freund
Author(s):  
Ali C. Kheirabadi ◽  
Dominic Groulx

This study compares two numerical strategies for modeling flow and heat transfer through mini- and microchannel heatsinks, the unit cell approximation, and the full 3D model, with the objective of validating the former approach. Conjugate heat transfer and laminar flow through a 2 × 2 cm2 copper–water heatsink are modeled using the finite element package COMSOL Multiphysics 5.0. Parametric studies showed that as the heatsink channels’ widths were reduced, and the total number of channels increased, temperature and pressure predictions from both models converged to similar values. Relative differences as low as 5.4% and 1.6% were attained at a channel width of 0.25 mm for maximum wall temperature and channel pressure drop, respectively. Due to its computational efficiency and tendency to conservatively overpredict temperatures relative to the full 3D method, the unit cell approximation is recommended for parametric design of heatsinks with channels’ widths smaller than 0.5 mm, although this condition only holds for the given heatsink design. The unit cell method is then used to design an optimal heatsink for server liquid cooling applications. The heatsink has been fabricated and tested experimentally, and its thermal performance is compared with numerical predictions. The unit cell method underestimated the maximum wall temperature relative to experimental results by 3.0–14.5% as the flowrate rose from 0.3 to 1.5 gal/min (1.1–5.7 l/min).


2015 ◽  
Vol 19 (5) ◽  
pp. 1769-1789 ◽  
Author(s):  
Volodymyr Rifert ◽  
Volodymyr Sereda

Survey of the works on condensation inside smooth horizontal tubes published from 1955 to 2013 has been performed. Theoretical and experimental investigations, as well as more than 25 methods and correlations for heat transfer prediction are considered. It is shown that accuracy of this prediction depends on the accuracy of volumetric vapor content and pressure drop at the interphase. The necessity of new studies concerning both local heat transfer coefficients and film condensation along tube perimeter and length under annular, stratified and intermediate regimes of phase flow was substantiated. These characteristics being defined will allow determining more precisely the boundaries of the flow regimes and the methods of heat transfer prediction.


2002 ◽  
Vol 29 (2) ◽  
pp. 2847-2854 ◽  
Author(s):  
Jiro Kasahara ◽  
Kouki Takazawa ◽  
Takakage Arai ◽  
Yu Tanahashi ◽  
Shingo Chiba ◽  
...  

Author(s):  
Xiaolong Yan ◽  
Wei Li ◽  
Weiyu Tang ◽  
Hua Zhu ◽  
Zhijian Sun ◽  
...  

Enhanced condensation heat transfer of two-phase flow on the horizontal tube side receives more and more concerns for its fundamentality and importance. Experimental investigations on convective condensation were performed respectively in different horizontal tubes: (i) a smooth tube (11.43 mm, inner diameter); (ii) a herringbone tube (11.43 mm, fin root diameter); and (iii) three enhanced surface (EHT) tubes (11.5 mm, equivalent inner diameter): 1EHT tube, 2EHT-1 tube and 2EHT-2 tubes. The surface of EHT tubes is enhanced by arrays of dimples with the background of petal arrays. Experiments were conducted at a saturation temperature of approximately 320 K; 0.8 inlet quality; and 0.2 outlet quality; 72–181 kg·m−2·s−1 mass flux using R22, R32 and R410A as the working fluid. The refrigerant R32 presents great heat transfer performance than R410A and R22 at low mass flux due to its higher latent heat of vaporization and larger thermal conductivity. The heat enhancement ratio of the herringbone tube is 2.72–2.82, rated number one. The primary dimples on the EHT tube increase turbulence and flow separation, and the secondary petal pattern produce boundary layer disruption to many smaller scale eddies. The 2EHT tubes are inferior to the 1EHT tube. A performance factor is used to evaluate the enhancement effect except of the contribution of area increase.


Author(s):  
Kevin Irick ◽  
Nima Fathi

Abstract The complexity of conductive heat transfer in a structure increases with heterogeneity (e.g., multi-component solid-phase systems with a source of internal thermal heat generation). Any discontinuity of material property — especially thermal conductivity — would warrant a thorough analysis to evaluate the thermal behavior of the system of interest. Heterogeneous thermal conditions are crucial to heat transfer in nuclear fuel assemblies, because the thermal behavior within the assemblies is governed significantly by the heterogeneous thermal conditions at both the system and component levels. A variety of materials have been used as nuclear fuels, the most conventional of which is uranium dioxide, UO2. UO2 has satisfactory chemical and irradiation tolerances in thermal reactors, whereas the low thermal conductivity of porous UO2 can prove challenging. Therefore, the feasibility of enhancing the thermal conductivity of oxide fuels by adding a high-conductivity secondary solid component is still an important ongoing topic of investigation. Undoubtedly, long-term, stable development of clean nuclear energy would depend on research and development of innovative reactor designs and fuel systems. Having a better understanding of the thermal response of the unit cell of a composite that represents a fuel matrix cell would help to develop the next generation of nuclear fuel and understand potential performance enhancements. The aim of this article is to provide an assessment of a high-fidelity computational model response of heterogeneous materials with heat generation in circular fillers. Two-dimensional, steady-state systems were defined with a circular, heat-generating filler centered in a unit-cell domain. A Fortran-based finite element method (FEM) code was used to solve the heat equation on an unstructured triangular mesh of the systems. This paper presents a study on the effects of a heat-generating filler material’s relative size and thermal conductivity on effective thermal conductance, Geff, within a heterogenous material. Code verification using the method of manufactured solution (MMS) was employed, showing a second-order accurate numerical implementation. Solution verification was performed using a global deviation grid convergence index (GCI) method to assess solution convergence and estimate solution numerical uncertainty, Unum. Trend results are presented, showing variable response in Geff to filler size and thermal conductivity.


Author(s):  
Taher Schobeiri ◽  
Eric McFarland ◽  
Frederick Yeh

In this report the results of aerodynamic and heat transfer experimental investigations performed in a high Reynolds number turbine cascade test facility are analyzed. The experimental facility simulates the high Reynolds number flow conditions similar to those encountered in the space shuttle main engine. In order to determine the influence of Reynolds number on aerodynamic and thermal behavior of the blades, heat transfer coefficients were measured at various Reynolds numbers using liquid crystal temperature measurement technique. Potential flow calculation methods were used to predict the cascade pressure distributions. Boundary layer and heat transfer calculation methods were used with these pressure distributions to verify the experimental results.


Sign in / Sign up

Export Citation Format

Share Document