Miscibility Process of Hydrocarbon Mixture Gas and Crude Oil: Insights from Molecular Dynamics

Author(s):  
Shaohua Zhu ◽  
Hongwei Yu ◽  
Gengping Yan ◽  
Jun Li ◽  
An Cao ◽  
...  
ACS Omega ◽  
2020 ◽  
Vol 5 (30) ◽  
pp. 18557-18564
Author(s):  
Xuejiao Chen ◽  
Lei Hou ◽  
Xiaoyu Wei ◽  
Dmitry Bedrov

1977 ◽  
Vol 17 (02) ◽  
pp. 122-128 ◽  
Author(s):  
W.H. Wade ◽  
J.C. Morgan ◽  
J.K. Jacobson ◽  
R.S. Schechter

Abstract The interfacial tension of surfactant mixtures with hydrocarbons obeys a simple scaling rule. Many apparently inert surfactants give low tensions when in mixtures; the scaling rule still applies to these mixtures. The influence of surfactant structure and molecular weight on low-tension behavior is examined, and the application of these results to the optimization of surfactant flooding systems is discussed. Introduction It has been shown that the interfacial-tension behavior of a given crude oil with a surfactant solution of the sulfonate type may be modeled by replacing the crude oil with one particular alkane. The number of carbon atoms in the alkane is referred to as the equivalent alkane carbon number (EACN) of the crude oil, and this EACN is independent of the surfactant used (at fixed standard conditions). This equivalency of a crude oil and an alkane is a result of the simple averaging behavior of hydrocarbons when mixed. Any hydrocarbon may be assigned an EACN value. For instance, when homologous series of alkyl benzenes and alkanes are run against the petroleum sulfonate TRS 10-80 at 2 gm/liter of surfactant with 10 gm/liter NaCl present, heptyl benzene and heptane, respectively, give minimum interfacial tensions, a. The EACN of heptyl benzene is 7, since it is equivalent to heptane. A simple averaging rule will give the EACN of a hydrocarbon mixture : (1) where x is the mole fraction of the ith component. Thus, an equimolar mixture of undecane (EACN 11) and heptyl benzene (EACN 7) has an EACN of 9. If a surfactant gives a low (minimum) sigma against nonane (EACN 9), it will also give a low sigma against the above mixture. Eq. 1 implies that a crude oil, which is a multicomponent hydrocarbon mixture, may be assigned an EACN. This has been verified experimentally. For example, Big Muddy field crude oil has an EACN of 8.5. Therefore, any surfactant phase giving a minimum tension against an equimolar mixture of octane and nonane gives a low tension against Big Muddy crude. All crude oils rested to date have EACN's ranging from 6 to 9. For a given surfactant, the alkane of minimum tension (min) may be affected by the electrolyte concentration or type, the temperature, the surfactant concentration, or the presence of a cosurfactant. These system variables may be adjusted until the nmin for a surfactant matches exactly the EACN of a crude oil. For any particular surfactant, many different combinations of variables will give the same n min value; therefore, there are many possible systems, each with n = EACN, available for crude oil recovery. In practice, however, the system variables may be manipulated to a limited extent only. The temperature of an oil field is fixed, and the surfactant concentration is limited by considerations of solubility and expense. The electrolyte concentration and type is partly determined by oilfield conditions and is limited by the effect on surfactant solubility. These limitations mean that many of the surfactants presently available on a large enough scale for use in low-tension flooding will not give minimum tensions in the range required (n of 6 to 9). This paper shows how minimal sigma's in the required range may be found for some of these "off-scale" surfactants when they are used in surfactant mixtures. The hypothesis tested here is that surfactant mixtures average in a manner analogous to the averaging of hydrocarbons in the oil phase. It will be shown that each surfactant component may be assigned an n value and that the alkane of minimum tension of a mixture of surfactants, (n), is then given by (2) where x is now the mole fraction of the ith component of the surfactant mixture. This greatly extends the number of surfactants that may be considered as candidates for use in low interfacial-tension flooding. SPEJ P. 122


Author(s):  
Md Ashaduzzaman ◽  
Md. Yunus Miah

The objectives of this work were concentrated to investigate the enhancement of petrol distillate production from crude oil after treating with two additives. Attempts were also made to find out the mechanisms, those are responsible for enhancing the quantity and quality of petrol from crude oil by straight run refining process. From this study, it has been illustrated that the yield of petrol was directly proportional to the lubricating oil and inversely proportional to the bitumen asphalt content in the hydrocarbon mixture influenced by both physical and chemical reasons. The yield of petrol was increased ca. 4 % (w/w) when 0.25 % (w/w) additive-1 was used for blending before distillation. The physical properties of distillate petrol product were studied as well as the chemical quality was determined by TGA, 1H-NMR and GC-MS photometer.


2021 ◽  
Vol 21 (1) ◽  
pp. 85-97
Author(s):  
Zhentao Dong ◽  
Haitao Xue ◽  
Bohong Li ◽  
Shansi Tian ◽  
Shuangfang Lu ◽  
...  

Wettability is an important physical property of shale. This parameter is related to the shale material composition and the fluid properties in the shale pores and plays an important role in the exploration and development of shale oil. Wettability is affected by the scale and roughness. The contact angle at the nanoscale on a smooth surface can better reflect the wettability of shale than the contact angle at higher scales. Molecular dynamics simulations can be used to measure the contact angle on a smooth surface at the nanoscale. This paper focuses on the effects of organic matter and minerals in shale and different components of shale oil on shale wettability. Wetting models of “organic matter-oil component-water,” “quartz-oil component-water” and “kaolinite-oil component-water” at the nanoscale were constructed. Molecular dynamics simulation was used to study the morphological changes of different oil components and water on different surfaces. Studies have shown that organic matter is strongly oleophilic and hydrophobic. Polar components in shale oil can make organic matter slightly hydrophilic. It was recognized by quartz wettability experiments and simulation methods at the nanoscale that the cohesive energy of a liquid has a significant influence on the degree of spreading of the liquid on the surface. The “liquid–liquid–solid” wettability experiment is an effective method for determining mineral oleophilic or hydrophilic properties. The nanoquartz in the shale is strongly hydrophilic. The water wetting angle is related to the crude oil component. Nanokaolinite can have a tetrahedral or an octahedral surface; the tetrahedral surface is oleophilic and hydrophobic, and the octahedral surface exhibits strong hydrophilicity. The wettabilities of both surfaces are related to the crude oil component.


2018 ◽  
Vol 249 ◽  
pp. 1052-1059 ◽  
Author(s):  
Xuejiao Chen ◽  
Lei Hou ◽  
Wenchao Li ◽  
Shiyao Li ◽  
Yujie Chen

Langmuir ◽  
2021 ◽  
Author(s):  
Bulat Gizatullin ◽  
Marat Gafurov ◽  
Fadis Murzakhanov ◽  
Alexey Vakhin ◽  
Carlos Mattea ◽  
...  
Keyword(s):  

Langmuir ◽  
2016 ◽  
Vol 32 (14) ◽  
pp. 3375-3384 ◽  
Author(s):  
Mohammad Sedghi ◽  
Mohammad Piri ◽  
Lamia Goual

Sign in / Sign up

Export Citation Format

Share Document