Low Interfacial Tensions Involving Mixtures of Surfactants

1977 ◽  
Vol 17 (02) ◽  
pp. 122-128 ◽  
Author(s):  
W.H. Wade ◽  
J.C. Morgan ◽  
J.K. Jacobson ◽  
R.S. Schechter

Abstract The interfacial tension of surfactant mixtures with hydrocarbons obeys a simple scaling rule. Many apparently inert surfactants give low tensions when in mixtures; the scaling rule still applies to these mixtures. The influence of surfactant structure and molecular weight on low-tension behavior is examined, and the application of these results to the optimization of surfactant flooding systems is discussed. Introduction It has been shown that the interfacial-tension behavior of a given crude oil with a surfactant solution of the sulfonate type may be modeled by replacing the crude oil with one particular alkane. The number of carbon atoms in the alkane is referred to as the equivalent alkane carbon number (EACN) of the crude oil, and this EACN is independent of the surfactant used (at fixed standard conditions). This equivalency of a crude oil and an alkane is a result of the simple averaging behavior of hydrocarbons when mixed. Any hydrocarbon may be assigned an EACN value. For instance, when homologous series of alkyl benzenes and alkanes are run against the petroleum sulfonate TRS 10-80 at 2 gm/liter of surfactant with 10 gm/liter NaCl present, heptyl benzene and heptane, respectively, give minimum interfacial tensions, a. The EACN of heptyl benzene is 7, since it is equivalent to heptane. A simple averaging rule will give the EACN of a hydrocarbon mixture : (1) where x is the mole fraction of the ith component. Thus, an equimolar mixture of undecane (EACN 11) and heptyl benzene (EACN 7) has an EACN of 9. If a surfactant gives a low (minimum) sigma against nonane (EACN 9), it will also give a low sigma against the above mixture. Eq. 1 implies that a crude oil, which is a multicomponent hydrocarbon mixture, may be assigned an EACN. This has been verified experimentally. For example, Big Muddy field crude oil has an EACN of 8.5. Therefore, any surfactant phase giving a minimum tension against an equimolar mixture of octane and nonane gives a low tension against Big Muddy crude. All crude oils rested to date have EACN's ranging from 6 to 9. For a given surfactant, the alkane of minimum tension (min) may be affected by the electrolyte concentration or type, the temperature, the surfactant concentration, or the presence of a cosurfactant. These system variables may be adjusted until the nmin for a surfactant matches exactly the EACN of a crude oil. For any particular surfactant, many different combinations of variables will give the same n min value; therefore, there are many possible systems, each with n = EACN, available for crude oil recovery. In practice, however, the system variables may be manipulated to a limited extent only. The temperature of an oil field is fixed, and the surfactant concentration is limited by considerations of solubility and expense. The electrolyte concentration and type is partly determined by oilfield conditions and is limited by the effect on surfactant solubility. These limitations mean that many of the surfactants presently available on a large enough scale for use in low-tension flooding will not give minimum tensions in the range required (n of 6 to 9). This paper shows how minimal sigma's in the required range may be found for some of these "off-scale" surfactants when they are used in surfactant mixtures. The hypothesis tested here is that surfactant mixtures average in a manner analogous to the averaging of hydrocarbons in the oil phase. It will be shown that each surfactant component may be assigned an n value and that the alkane of minimum tension of a mixture of surfactants, (n), is then given by (2) where x is now the mole fraction of the ith component of the surfactant mixture. This greatly extends the number of surfactants that may be considered as candidates for use in low interfacial-tension flooding. SPEJ P. 122

1978 ◽  
Vol 18 (04) ◽  
pp. 242-252 ◽  
Author(s):  
W.H. Wade ◽  
James C. Morgan ◽  
R.S. Schechter ◽  
J.K. Jacobson ◽  
J.L. Salager

Abstract The conditions necessary for optimum low tension and phase behavior at high surfactant concentrations are compared with those required at low surfactant concentrations, where solubilization effects are not usually visible. Major differences in tension behavior between the high and low concentration systems may be observed when the surfactant used contains a broad spectrum of molecular species, or if a higher molecular weight alcohol is present, but not otherwise in the systems studied. We compared the effects of a number of aliphatic alcohols on tension with phase behavior. An explanation of these results, and also of other observed parameter dependences, is proposed in terms of changes in surfactant chemical potential. Surfactant partitioning data is presented that supports this concept. Introduction Taber and Melrose and Brandner established that tertiary oil recovery by an immiscible flooding process should be possible at low capillary process should be possible at low capillary numbers. In practice, the required capillary number, which is a measure of the ratio of viscous to capillary forces governing displacement of trapped oil, may be achieved by lowering the oil/water interfacial tension to about 10(-3) dyne/cm, or less. Subsequent research has identified a number of surfactants that give tensions of this order with crude oils and hydrocarbon equivalents. Interfacial tension studies tended to fall into two groups. Work at low surfactant concentrations, typically 0.7 to 2 g/L, has established that a crude oil may be assigned an equivalent alkane carbon number. Using pure alkanes instead of crude oil has helped the study of system parameters affecting low tension behavior. Important parameters examined include surfactant molecular structure, and electrolyte concentration, surfactant concentration, surfactant molecular weight, and temperature. At higher surfactant concentrations, interfacial tension has been linked to the phase behavior of equilibrated systems. When an aqueous phase containing surfactant (typically 30 g/L), electrolyte, and low molecular weight alcohol is equilibrated with a hydrocarbon, the surfactant may partition largely into the oil phase, into the aqueous phase, or it may be included in a third (middle) phase containing both water and hydrocarbon. Low interfacial tensions occur when the solubilization of the surfactant-free phase (or phases) into the surfactant-containing phase is maximized. Maximum solubilization and minimum tensions have been shown to be associated with the formation of a middle phase. Both the high and low surfactant concentration studies have practical importance because even though a chemical flood starts at high concentration, degradation of the injected surfactant slug will move the system toward lower concentrations. This study investigates the relationship between tension minima found with low concentration systems, and low tensions found with equivalent systems at higher surfactants concentrations, particularly those in which third-phase formation occurs. Many of the systems studied here contain a low molecular weight alcohol, as do most surfactant systems described in the literature or proposed for actual oil recovery. Alcohol originally was added to surfactant systems to help surfactant solubility, but can affect tensions obtained with alkanes, and with refined oil. Few systematic studies of the influence of alcohol on tension behavior exist. Puerto and Gale noted that increasing the alcohol Puerto and Gale noted that increasing the alcohol molecular weight decreases the optimum salinity for maximum solubilization and lowest tensions. The same conclusions were reached by Hsieh and Shah, who also noted that branched alcohols had higher optimum salinities than straight-chain alcohols of the same molecular weight. Jones and Dreher reported equivalent solubilization results with various straight- and branched-chain alcohols. In this study, we fix the salinity of each system and instead vary the molecule; weight of the hydrocarbon phase. SPEJ P. 242


1982 ◽  
Vol 22 (04) ◽  
pp. 472-480 ◽  
Author(s):  
S.L. Enedy ◽  
S.M. Farouq Ali ◽  
C.D. Stahl

Abstract This investigation focused on developing an efficient chemical flooding process by use of dilute surfactant/polymer slugs. The competing roles of interfacial tension (IFT) and equivalent weight (EW) of the surfactant used, as well as the effect of different types of preflushes on tertiary oil recovery, were studied. Volume of residual oil recovered per gram of surfactant used was examined as a function of these variables and slug size. Tertiary oil recovery increased with an increase in the dilute surfactant slug size and buffer viscosity. However, low IFT does not ensure high oil recovery. An increase in surfactant EW used actually can lead to a decrease in oil recovery. Tertiary oil recovery was also sensitive to preflush type. Reasons for the observed behavior are examined in relation to the surfactant properties as well as to adsorption and retention. Introduction Two approaches are being used in development of surfactant /polymer-type chemical floods:a small-PV slug of high surfactant concentration, ora large-PV slug of low surfactant concentration. This study deals with the latter-i.e., dilute aqueous slugs (with polymer added in many cases) containing less than or equal 2.0 wt% sulfonates and about 0. 1 wt% crude oil. Because the dilute slug contains little of the dispersed phase, an aqueous surfactant slug usually is unable to displace the oil miscibly; however, residual brine is miscible with the slug if the inorganic salt concentration is not excessive. The dilute, aqueous petroleum sulfonate slug lowers the oil/water IFT. overcoming capillary forces. This process commonly is referred to as locally immiscible oil displacement. Objectives The objective of this work was to develop an efficient dilute surfactant/polymer slug for the Bradford crude with a variety of sulfonate combinations. Effects of varying the slug characteristics such as equivalent weight, IFT, salt concentration, etc. on tertiary oil recovery were examined. Materials and Experimental Details The petroleum sulfonates and the dilute slugs used in this study are listed in Tables 1 and 2, respectively. The crude oil tested was Bradford crude 144 degrees API (0.003 g/cm3), 4 cp (0.004 Pa.s)]. The polymer solutions were prefiltered and driven by brines of various concentrations (0.02, 1.0, and 2.0% NACl). In many cases, the polymer was added to the slug. Conventional coreflood equipment described in Ref. 3 was used. Berea sandstone cores (unfired) 2 in, (5 cm) in diameter and 4 ft (1.3 m) in length were used for all tests, with a new core for each test. Porosity ranged from 19.3 to 21.0%, permeability averaged 203 md, and the waterflood residual oil saturation averaged 33.1%. IFT's were measured by the spinning drop method. Viscosities were measured with a Brookfield viscosimeter and are reported here for 6 rpm (0.1 rev/s). The dilute slugs containing polymer exhibited non-Newtonian behavior. Without polymer the behavior was Newtonian. Sulfonate concentration in the oleic phase was determined by an infrared spectrophotometer, while the concentration in the aqueous phase was measured by ultraviolet (UV) absorbance analysis. Discussion of Results Slug development in this investigation was an evolutionary process. Dilute slugs were developed and core tested in a sequential manner (Table 2). Slugs 100 through 200 yielded insignificant ternary oil recoveries (largely because of excessive adsorption and retention), but the results helped determine improvements in slug compositions and in the overall chemical flood. This paper gives results for the more efficient slugs only. SPEJ P. 472^


1975 ◽  
Vol 15 (03) ◽  
pp. 197-202 ◽  
Author(s):  
Harley Y. Jenning

Abstract This paper presents the results of a study of caustic solution-crude oil interfacial tension measurements on 164 crude oils from 78 fields. Of these crude oils 131 showed marked surface activity against caustic solutions. Surface activity of crude oil against caustic solution correlates with the acid number, gravity, and viscosity. Almost all crude oils with gravities of 20 degrees API or lower produced a caustic solution-crude oil interfacial produced a caustic solution-crude oil interfacial tension less than 0.01 dyne/cm. Of the interfacially active samples, 90 percent reached maximum measurable surface activity at a caustic concentration of close to 0.1 percent by weight. The dissolved solids content of the water bas a marked influence on the surface activity. Sodium chloride in solution reduces the caustic concentration required to give maximum surface activity. Conversely, calcium chloride in solution suppresses surface activity. Introduction The oil-production technology literature contains a number of papers that indicate that the addition of sodium hydroxide to the flood water beneficially affects oil recovery. Although the proposed recovery mechanisms differ in detail, a variable common to almost all is the interfacial tension between caustic solutions and crude oil. A study of the factors influencing caustic solution-crude oil interfacial tensions is fundamental to an understanding of the proposed mechanisms and their optimum utilization. proposed mechanisms and their optimum utilization. We have obtained interfacial tensions against caustic solutions of 164 crudes. These crudes come from all major oil-producing areas in the free world. In addition to determining the correlation of interfacial tension with crude oil properties of acid number, gravity, and viscosity, we have also determined the effect of certain dissolved solids in the water. We define acid number as the number of milligrams of potassium hydroxide required to neutralize the acid in one gram of sample. The interfacial tension data were obtained by the pendent-drop method. pendent-drop method. EXPERIMENTAL PROCEDURE The caustic solutions used in this study were prepared by adding reagent-grade sodium hydroxide prepared by adding reagent-grade sodium hydroxide to laboratory distilled water. Our standard solutions were made from a 50 percent by weight reagent-grade sodium hydroxide solution. For convenience in relating our laboratory data to possible field application, the data were recorded and plotted in terms of weight percent sodium hydroxide. The pH of the caustic solutions was determined experimentally using a Coming expanded-scale pH meter; and the densities of the caustic solutions were measured experimentally using a Chainomatic Westphal balance. CRUDE OILS The crude oils were protected from the atmosphere and were collected in carefully cleaned glass or, when practicable, in plastic-lined containers. The crude oil samples were free of chemical additives, such as emulsion breakers and corrosion inhibitors. If the oil contained suspended solid material it was dehydrated and filtered. The densities were determined by the Westphal balance; and the viscosities were determined as a function of temperature using a glass capillary viscometer. APPARATUS AND EXPERIMENTAL PROCEDURE The interfacial tension measurements described in this study were made by the pendent-drop method. The pendent-drop method is based on the formation of a drop of liquid on a tip, the drop being slightly smaller than that which will spontaneously detach itself from the tip. The profile of this drop is magnified by projection and can be recorded on a photosensitive emulsion. The interfacial tension is photosensitive emulsion. The interfacial tension is calculated from the dimensions of the drop profile, a knowledge of be densities of the liquid forming. the drop, and the bulk phase surrounding the drop. All interfacial tensions described in this paper were recorded at a temperature of 74 degrees F and at an interface age of 10 seconds. Most systems were studied as a function of temperature; but temperature was found to be a second-order effect, so we selected 74 degrees F in order that all correlations would be at constant temperature. We selected 10 seconds because a study of the time variable showed that most of the decay of interfacial tension with time in these systems had occurred by the end of 10 seconds. SPEJ P. 197


1976 ◽  
Vol 16 (06) ◽  
pp. 351-357 ◽  
Author(s):  
J.L. Cayias ◽  
R.S. Schechter ◽  
W.H. Wade

American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc. Abstract Using the correlation between interfacial-tension behavior for three homologous series of hydrocarbons and a simple, mole-fraction averaging procedure, it was found possible to predict interracial tensions for complex hydrocarbon oil phases/aqueous surfactant Phases. This leads to an extension of the equivalent alkane carbon-number (EACN) concept to a mixed hydrocarbon oil phase. The EACN for eight crude oils was determined and it was found that the interfacial tension of crudes can be best modeled by alkanes in the range of hexane to nonane. Introduction Previous publications, have demonstrated that low interfacial tensions can be attained with pure hydrocarbons as the oil phase. The aqueous phase contained surfactants that were proposed as candidates for tertiary oil recovery of crude oils, namely petroleum sulfonates and alkyl xylene sulfonates. These observations demonstrate that complex hydrocarbon mixtures are not a necessary requirement for low tensions and, as can be attested by any worker in the field, are certainly not a sufficient requirement for attaining low tensions. The question is, then, how can tensions for complex hydrocarbon mixtures (crude oils) be modeled given the tension of their components? Systematic trends in the tension have been observed for various hydrocarbon homologous series. It was found, for example, that an alkyl benzene gave the same interfacial tension as an alkane having the same number of carbon atoms as the alkyl side chain. The alkyl side chain is therefore the only contributor to the tension. Likewise, it was found that a cyclohexyl ring was approximately equivalent to four carbons. The hydrocarbon giving minimal tension can be varied by changing either the salinity or the surfactant concentration, but the above-mentioned scaling rules were found to apply. These observations have resulted in the concept of an equivalent alkane carbon number (EACN) for binary mixtures of alkanes, alkyl benzenes, and alkyl cyclohexanes. Hydrocarbon behavior was found to be additive and mole-fraction weighted by the simple relationship, (1) where the Ci are EACN values for the individual components, the Xi are mole fractions, and Cavg is the EACN for the mixture. For example, an equimolar mixture of butylcyclohexane (C1 = 4 for butyl groups + 4 for cyclohexyl = 8, X1 = 0.5) and propylbenzene (C2 = 3 for the propyl group + 0 for propylbenzene (C2 = 3 for the propyl group + 0 for benzene, X2 = 0.5) has a Cavg of 5.5. This mixture then would be predicted to yield a minimum interfacial tension against a surfactant solution that gives low tensions against pure alkanes intermediate between pentane and hexane. Eq. 1 has been verified for a wide variety of binary mixtures. Crude-oil behavior could be predicted by expanding Eq. 1 to the general form, (2) where the running index i extends over all the crude oil components. Of course, this cannot be accomplished in practice since all the components of a specific crude oil have never been identified. However, if Eq. 2 applies to complex but known-composition hydrocarbon mixtures, then applicability to crude oils can be inferred. Tests verifying Eq. 2 are reported in this paper. Eq. 2, in a variety of situations, requires that effects resulting from alkane isomerization be investigated. In addition, the role of sulfur compounds needs to be assessed. These studies also are reported. Finally, two different experimental techniques are used to validate the EACN concept as applied to crude oils, and values for eight samples are reported. EXPERIMENTAL PROCEDURE All interfacial tensions were measured without pre-equilibration at 27 degrees C using the spinning drop pre-equilibration at 27 degrees C using the spinning drop technique. Five sodium sulfonate surfactants were used: Witco TRS 10-80, Shell Martinez 380 and Martinez 470, and Exxon Chemical Dodecyl and Pentadecyl Xylene sulfonates. Pentadecyl Xylene sulfonates. SPEJ P. 351


1982 ◽  
Vol 22 (03) ◽  
pp. 350-352
Author(s):  
G.E. Kellerhals

Abstract In surfactant flooding, low interfacial tensions (IFT's) are required for recovery of additional significant quantities of crude oil from a reservoir rock. This paper indicates the usefulness of perspective plots to facilitate comparison of sets of IFT data. Such perspective plots simplify the process of screening various surfactant systems for enhanced oil recovery. Introduction Numerous articles have been written about the effects and/or importance of IFT between oil and aqueous phases in determining ultimate oil recovery during a phases in determining ultimate oil recovery during a secondary (waterflooding) or tertiary oil-recovery process. In the area of micellar/polymer or surfactant process. In the area of micellar/polymer or surfactant flooding, IFT has been studied extensively both by industrial and by academic investigators. A simplistic summary of this work is that low IFT's (generally corresponding to high capillary numbers ( are required for recovery of additional significant quantities of crude oil from a reservoir rock. Method Development Several variables influence between an oil-rich phase and a surfactant-containing aqueous phase. During phase and a surfactant-containing aqueous phase. During a surfactant flood, variations in surfactant concentration and salt concentration will occur as a result of mixing of the chemical slug with the pre flush (or formation brine) and polymer drive (" rear mixing" ). Nelson investigated salt concentrations required during a chemical flood to achieve efficient oil displacement. Since these variables (and others) change during the progress of a flood, it is desirable to determine the impact of these changes on the IFT between the oil- and water-rich phases. To assess the importance of changes in these two key variables (surfactant concentration and salinity) on IFT, an x-y plot may be constructed with values of each variable along the axes. The IFT for a particular surfactant concentration and salinity then is obtained experimentally and the numerical value placed at the corresponding (x, y) point on the plot. The resultant figure/table can be referred to as an IFT map. Points of equal, or about equal, IFT can be connected to produce an IFT contour map. In the investigation of the effect(s) of temperature on a given surfactant system and crude oil, IFT maps might be constructed for each of the pertinent temperatures. IFT's might be determined at six different sodium chloride concentrations (e.g., 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 wt%) and four surfactant concentrations (e.g., 0.085, 0.064, 0.042, and 0.021 meq/mL), resulting in IFT maps (for each temperature) each consisting of 24 IFT values. A comparison of the values of one map to the values of a second map (measurements made at different temperature) then is required to determine the impact of the temperature change. A single value for IFT for a given salinity and surfactant concentration assumes that the system is two-phase, because two IFT's can be measured for a three-phase system consisting of an oil-rich phase, a water-rich phase, and a microemulsion phase. phase. A method to allow easier comparison for the relatively large number of IFT data points that may be obtained during the study/screening of various surfactant systems at various conditions is described in this paper. The technique consists of interpolating between IFT values and then plotting the data with a perspective plotting routine. The method allows comparisons of IFT values for different crude oils, temperatures, cosolvent types, surfactant types, hardness ion concentrations, etc., through visual scanning of a perspective plot ranter than through trying to judge or compare numerical IFT values of an IFT map. SPEJ p. 350


1982 ◽  
Vol 22 (03) ◽  
pp. 371-381 ◽  
Author(s):  
Jude O. Amaefule ◽  
Lyman L. Handy

Abstract Relative permeabilities of systems containing low- tension additives are needed to develop mechanistic insights as to how injected aqueous chemicals affect fluid distribution and flow behavior. This paper presents results of an experimental investigation of the effect of low interfacial tensions (IFT's) on relative oil/water permeabilities of consolidated porous media. The steady- and unsteady-state displacement methods were used to generate relative permeability curves. Aqueous low-concentration surfactant systems were used to vary IFT levels. Empirical correlations were developed that relate the imbibition relative permeabilities, apparent viscosity, residual oil, and water saturations to the interfacial tension through the capillary number (Nc=v mu / sigma). They require two empirical, experimentally generated coefficients. The experimental results show that the relative oil/water permeabilities at any given saturation are affected substantially by IFT values lower than 10-1 mN/m. Relative oil/water permeabilities increased with decreasing IFT (increasing N ). The residual oil and residual water saturations (S, and S) decreased, while the total relative mobilities increased with decreasing IFT. The correlations predict values of relative oil/water permeability ratios, fractional flow, and residual saturations that agree with our experimental data. Apparent mobility design viscosities decreased exponentially with the capillary number. The results of this study can be used with simulators to predict process performance and efficiency for enhanced oil-recovery projects in which chemicals are considered for use either as waterflood or steamflood additives. However, the combined effect of decreased interfacial tension and increased temperature on relative permeabilities has not yet been studied. Introduction Oil displacement with an aqueous low-concentration surfactant solution is primarily dependent on the effectiveness of the solutions in reducing the IFT between the aqueous phase and the reservoir oil. With the attainment of ultralow IFT's (10 mN/m) and with adequate mobility controls, all the oil contacted can conceivably be displaced. When the interfacial tension is reduced to near zero values, the process tends to approach miscible displacement. However, most high-concentration soluble oil systems revert to immiscible displacement processes as the injected chemical traverses the reservoir. This is a result of the continual depletion of the surfactant by adsorption on the rock and by precipitation with divalent cations in the reservoir brine. The mechanism by which residual oil is mobilized by low-tension displacing fluids cannot be explained solely by the application of Darcy's law to both the aqueous and the oleic phases. On the other hand, in those reservoir regions in which water and oil are flowing concurrently as continuous phases, Darcy's law would be expected to apply and the relative permeability concept would be valid. If a low-tension aqueous phase were to invade a region in which the oil had not as yet been reduced to a discontinuous irreducible saturation, one would expect, also, that the relative permeability concept would be applicable. Under circumstances for which these conditions apply, relative permeabilities at low interfacial tensions would be required, The effect of IFT's on relative permeability curves has received limited treatment in the petroleum literature. Leverett reported a small but definite tendency for a water/oil system in unconsolidated rocks to exhibit 20 to 30% higher relative permeabilities if the IFT was decreased from 24 to 5 mN/m. Mungan studied interfacial effects on oil displacement in Teflons cores. The interfacial tension values varied from 5 to 40 mN/m. SPEJ P. 371^


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6234
Author(s):  
Xu Jiang ◽  
Ming Liu ◽  
Xingxun Li ◽  
Li Wang ◽  
Shuang Liang ◽  
...  

Surfactants and nanoparticles play crucial roles in controlling the oil-water interfacial phenomenon. The natural oil-wet mineral nanoparticles that exist in crude oil could remarkably affect water-oil interfacial characteristics. Most of recent studies focus on the effect of hydrophilic nanoparticles dispersed in water on the oil-water interfacial phenomenon for the nanoparticle enhanced oil recovery. However, studies of the impact of the oil-wet nanoparticles existed in crude oil on interfacial behaviour are rare. In this study, the impacts of Span 80 surfactant and hydrophobic SiO2 nanoparticles on the crude oil-water interfacial characteristics were studied by measuring the dynamic and equilibrium crude oil-water interfacial tensions. The results show the existence of nanoparticles leading to higher crude oil-water interfacial tensions than those without nanoparticles at low surfactant concentrations below 2000 ppm. At a Span 80 surfactant concentration of 1000 ppm, the increase of interfacial tension caused by nanoparticles is largest, which is around 8.6 mN/m. For high Span 80 surfactant concentrations, the less significant impact of nanoparticles on the crude oil-water interfacial tension is obtained. The effect of nanoparticle concentration on the crude oil-water interfacial tension was also investigated in the existence of surfactant. The data indicates the less significant influence of nanoparticles on the crude oil-water interfacial tension at high nanoparticle concentration in the presence of Span 80 surfactant. This study confirms the influences of nanoparticle-surfactant interaction and competitive surfactant molecule adsorption on the nanoparticles surfaces and the crude oil-water interface.


1977 ◽  
Vol 17 (02) ◽  
pp. 129-139 ◽  
Author(s):  
Robert N. Healy ◽  
Ronald L. Reed

Abstract Economical microemulsion flooding inevitably involves microemulsion phases that are immiscible with water, oil, or both. Oil recovery is largely affected by displacement efficiency in the immiscible regime. Therefore, it is pertinent to study this immiscible aspect in relation to variables that affect phase behavior and interfacial tension between phases. This is accomplished through core flooding experiments wherein microemulsions immiscible with oil and/or water are injected to achieve enhanced oil recovery. One advantage of such an immiscible microemulsion flood is that surfactant concentration can be small and slug size large, thereby reducing deleterious effects of reservoir heterogeneity; a disadvantage is that the temporary high oil recovery accompanying locally miscible displacement before slug breakdown is reduced. Final oil saturation remaining after lower, middle, and upper-phase microemulsion floods is studied as a function of salinity, cosolvent, temperature, and surfactant structure; and results are related to interfacial tension, phase behavior and solubilization parameters. A conclusion is that immiscible microemulsion flooding is an attractive alternative to conventional microemulsion processes. Oil recovery obtained from microemulsion slugs is correlated with capillary number based on what is called the controlling interracial tension. Physically, this means the least effective of the Physically, this means the least effective of the displacement processes at the slug front or rear determines the flood outcome. Finally, a screening procedure is developed that is useful for either immiscible or conventional microemulsion floods and that can reduce the number of core floods required to estimate oil recovery potential for a candidate microemulsion system. potential for a candidate microemulsion system Introduction This is the fourth in a sequence of papers dealing with miscible and immiscible aspects of microemulsion flooding. The first of these papers identified micellar structures above the binodal curve and showed how the region of miscibility could be maximized at the expense of the multiphase region, thereby prolonging locally miscible displacement. This was accomplished by varying salinity, and the notion of optimal salinity was introduced as that which minimized the extent of the multiphase region. Interfacial tensions within the multiphase region were measured and found to vary nearly three orders of magnitude, depending on WOR and surfactant concentration. Careful isothermal pre-equilibration of bulk phases was a requisite to all interfacial tension measurements. The second paper emphasized core flooding behavior and distinguished locally miscible displacement before slug breakdown, from immiscible displacement occurring thereafter. Fractional oil flow was correlated with capillary number and it was found that an effective immiscible displacement cannot be distinguished from the locally miscible case. Further, during an effective flood, the greater part of the oil was recovered during the immiscible regime. Finally, it was shown that micellar structure within the miscible region is not of itself an important variable. Having determined that the immiscible aspect of a microemulsion flood was important and dominant, the third paper dealt extensively with the multiphase region. Microemulsions were classified as lower-phase (1), upper-phase, (u), or middle-phase (m) in equilibrium with excess oil, excess water, or both excess oil and water, respectively. Transitions among these phases were studied and systematized as functions of a number of variables. Solubilization parameters for oil and water in microemulsions were introduced and shown to correlate interfacial tensions. The middle-phase was identified as particularly significant because microemulsion/excess-oil and microemulsion/ excess-water tensions could be made very low simultaneously. In this paper, the sequence is continued by introducing the notion of an immiscible microemulsion flood as one having an injection composition in the neighborhood of the multiphase boundary. SPEJ P. 129


1978 ◽  
Vol 18 (06) ◽  
pp. 409-417 ◽  
Author(s):  
D.T. Wasan ◽  
S.M. Shah ◽  
N. Aderangi ◽  
M.S. Chan ◽  
J.J. McNamara

Original manuscript received in Society of Petroleum Engineers office Sept. 20, 1977. Paper accepted for publication June 2, 1978. Revised manuscript received Aug. 2, 1978. Paper (SPE 6846) was presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, held in Denver, Oct. 9-12, 1977. Abstract Results of experiments on the coalescence of crude oil drops at an oil-water interface and interdroplet coalescence in crude oil-water emulsions containing petroleum sulfonates and cosurfactant as surfactant systems with other chemical additives were analyzed in terms of interracial viscosity, interfacial tension, interfacial charge, and thickness of the films surrounding the microdroplets. A qualitative correlation was found between coalescence rates and interfacial viscosities; however, there appears to be no direct correlation with interfacial tension. New insight has been gained into the influence of emulsion stability in tertiary oil recovery by surfactant/polymer flooding in laboratory core tests. We concluded that those systems that result in relatively stable emulsions yield poor coalescence rates and, hence, poor oil recovery, Introduction The ability of the surfactant/polymer system to initiate and to propagate an oil bank is the single most important feature of a successful tertiary oil-recovery process. The mechanisms of oil-bank formation and development are yet unknown. It has been suggested that without the initiation of the oil bank, the process behaves more like the unstable injection of a surfactant solution alone, where the oil is produced by entrainment or emulsification in the flowing surfactant stream. In a laboratory study of the initial displacement of residual hydrocarbons by aqueous surfactant solutions, Childress and Schechter and Wade observed that those systems that spontaneously emulsified and coalesced rapidly yielded better oil recovery than those systems that spontaneously formed stable emulsions. Recently, Strange and Talash, Whitley and Ware, and Widmeyer et al. reported results of Salem (IL) low-tension, water-flood tests that used Witco TRS 10-80 TM petroleum sulfonate surfactant solution. They found stable oil-in-water emulsions at the observer well in addition to emulsion problems at the production well and reported that problems at the production well and reported that actual oil recovery was about one-quarter the target value. These studies clearly suggested that poor efficiency of oil recovery results from emulsion stability problems in the low-tension surfactant or micellar processes. Vinatieri presented results of experiments on the stability of crude-oil-in-water emulsions that coo be produced during a surfactant or micellar flood. More recently, we have assessed the rigidity of interfacial films and its relationship to coalescence rate through measurements of interfacial viscosities of crude oils contacted against aqueous solutions containing various concentrations of surfactants and other pertinent chemical additives. Our data clearly indicate that in the absence of a commercial surfactant, interfacial viscosity builds up rapidly, coalescence is inhibited, and the resulting emulsion is quite stable. These phenomena also have been observed by Gladden and Neustadter. Several studies were conducted on the structure of film-forming material at the crude oil/water interface, its effect on emulsion stability, and the role of such films in oil recovery by water or caustic solution displacements. Rigid films were found to reduce the amount of oil recovered. Our studies also have shown that the addition of a commercial surfactant lowered both the interfacial viscosity (ISV) and interfacial tension (IFT) of the crude oil-aqueous solution system. However, the concentration at which both the IFT and ISV are minimized cannot be identified by measuring IFT alone. We have conducted a cinephotomicrographic examination of spontaneous emulsification and a microvisual study of the displacement of residual crude oil by aqueous surfactant solutions in micromodel porous media. SPEJ P. 409


Sign in / Sign up

Export Citation Format

Share Document