Orbital Contribution to Paramagnetism and Noninnocent Thiophosphate Anions in Layered Li2MP2S6 Where M = Fe and Co

Author(s):  
Timothy J. Diethrich ◽  
Peter Y. Zavalij ◽  
Stephanie Gnewuch ◽  
Efrain E. Rodriguez
Keyword(s):  
2018 ◽  
Vol 34 (4) ◽  
pp. 1937-1944 ◽  
Author(s):  
Vijay Kumar ◽  
Rajiv Kumar Singh ◽  
Veena Kumari ◽  
Birendra Kumar ◽  
Shivadhar Sharma

The ligand, 3-hydroxy-4-methoxybenzaldehydethiosemicarbazone has been prepared by the condensation of 3-hydroxy-4-methoxybenzaldehyde and thiosemicarbazide. With the help of this ligand the complexes of Co(II), Ni(II) and Cu(II) have been prepared with general formula [ML2X2] where X is secondary ligand, Cl–, NO3– and CH3COO–. The composition of complexes has been established by their microanalysis, while the metal contents have been determined gravimetrically and volumetrically. On the basis of IR spectra, the coordinating mode of ligand has been determined and has been found to have coordinated through azomethine nitrogen and thione sulphur. The magnetic moment of Co(II) complexes has been found between 4.96-4.72 B. M. The value is slightly higher than the μs value corresponding to three unpaired electrons (3.872 B.M). The increase in value may be attributed to orbital contribution from 4T1g ground state cubic term. The appearance of four bands in their electronic spectra is indicative of tetragonally distorted octahedral geometry of Co(II) complexes. The magnetic moment (3.20-3.30 B. M.) and appearance of 4 bands in the electronic spectra of Ni(II) complexes confirms the distorted octahedral geometry of the complexes. The magnetic moment of Cu(II) complexes has been determined to be (1.95-2.20 B. M.) which shows that Cu(II) complexes are magnetically dilute complexes. The appearance of three bands in their electronic spectra confirms John - Tellor distortion in octahedral symmetry of Cu(II) complexes. The various crystal field parameters exhibiting tetragonal distortion in the octahedral symmetry have also been derived. The positive value of Dt predicts tetragonal elongation in Oh symmetry.


1996 ◽  
Vol 328 ◽  
pp. 313-344 ◽  
Author(s):  
L. Thais ◽  
J. Magnaudet

New experiments have been carried out in a large laboratory channel to explore the structure of turbulent motion in the water layer beneath surface gravity waves. These experiments involve pure wind waves as well as wind-ruffled mechanically generated waves. A submersible two-component LDV system has been used to obtain the three components of the instantaneous velocity field along the vertical direction at a single fetch of 26 m. The displacement of the free surface has been determined simultaneously at the same downstream location by means of wave gauges. For both types of waves, suitable separation techniques have been used to split the total fluctuating motion into an orbital contribution (i.e. a motion induced by the displacement of the surface) and a turbulent contribution. Based on these experimental results, the present paper focuses on the structure of the water turbulence. The most prominent feature revealed by the two sets of experiments is the enhancement of both the turbulent kinetic energy and its dissipation rate with respect to values found near solid walls. Spectral analysis provides clear indications that wave–turbulence interactions greatly affect energy transfers over a significant frequency range by imposing a constant timescale related to the wave-induced strain. For mechanical waves we discuss several turbulent statistics and their modulation with respect to the wave phase, showing that the turbulence we observed was deeply affected at both large and small scales by the wave motion. An analysis of the phase variability of the bursting suggests that there is a direct interaction between the waves and the underlying turbulence, mainly at the wave crests. Turbulence budgets show that production essentially takes place in the wavy region of the flow, i.e. above the wave troughs. These results are finally used to address the nature of the basic mechanisms governing wave–turbulence interactions.


2019 ◽  
Vol 75 (8) ◽  
pp. 1073-1083 ◽  
Author(s):  
Feng Su ◽  
Cheng-Yong Zhou ◽  
Lin-Tao Wu ◽  
Xi Wu ◽  
Jing Su ◽  
...  

Two CoII-based coordination polymers, namely poly[(μ4-biphenyl-2,2′,5,5′-tetracarboxylato){μ2-1,3-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)], [Co2(C16H6O8)(C14H14N4)2] n or [Co2(o,m-bpta)(1,3-bimb)2] n (I), and poly[[aqua(μ4-biphenyl-2,2′,5,5′-tetracarboxylato){1,4-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)] dihydrate], {[Co2(C16H6O8)(C14H14N4)2(H2O)2]·4H2O} n or {[Co2(o,m-bpta)(1,4-bimb)2(H2O)2]·4H2O} n (II), were synthesized from a mixture of biphenyl-2,2′,5,5′-tetracarboxylic acid, i.e. [H4(o,m-bpta)], CoCl2·6H2O and N-donor ligands under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis. The bridging (o,m-bpta)4− ligands combine with CoII ions in different μ4-coordination modes, leading to the formation of one-dimensional chains. The central CoII atoms display tetrahedral [CoN2O2] and octahedral [CoN2O4] geometries in I and II, respectively. The bis[(1H-imidazol-1-yl)methyl]benzene (bimb) ligands adopt trans or cis conformations to connect CoII ions, thus forming two three-dimensional (3D) networks. Complex I shows a (2,4)-connected 3D network with left- and right-handed helical chains constructed by (o,m-bpta)4− ligands. Complex II is a (4,4)-connected 3D novel network with ribbon-like chains formed by (o,m-bpta)4− linkers. Magnetic studies indicate an orbital contribution to the magnetic moment of I and II due to the longer Co...Co distances. An attempt has been made to fit the χM T results to the magnetic formulae for mononuclear CoII complexes, the fitting indicating the presence of weak antiferromagnetic interactions between the CoII ions.


1976 ◽  
Vol 57 (1) ◽  
pp. 63-64
Author(s):  
S. Ogino ◽  
E. Haga

1993 ◽  
Vol 07 (01n03) ◽  
pp. 729-732 ◽  
Author(s):  
B.I. MIN

In order to investigate electronic and magnetic properties of Fe16X2 (X=B, C, N) ferromagnet, we have performed electronic structure calculations employing the total energy self-consistent local density functional linearized muffin tin orbital (LMTO) band method. Large enhancement of the magnetic moment is observed in FeII and FeIII, which are located farther from X than FeI. This suggests that the local environment plays a very important role in determining Fe magnetic moments in these compounds. Orbital contribution to the magnetic moment in Fe atoms of Fe16N2 is minor, totalof ~0.6 μB in the unit cell. We have obtained the average magnetic moments per Fe atom, 2.30, 2.40, and 2.50 μB, in Fe16B2, Fe16C2, and Fe16N2, respectively.


2007 ◽  
Vol 1050 ◽  
Author(s):  
Gerhard Jakob ◽  
Tobias Eichhorn ◽  
Michael Kallmayer ◽  
Hans-Joachim Elmers

AbstractA magnetically induced shape memory effect in Ni2MnGa results in huge magnetostrictive effects of several percent. Using x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) we investigated element specific magnetic moments and electronic structure of single crystalline, (110) oriented Ni2MnGa films on a-plane Al2O3 substrates in the austenite and martensite state. The structural phase transition of the samples is evident from temperature dependent x-ray diffraction and magnetization measurements. The Ni XAS differ significantly for temperatures above and below the martensite transition in agreement with published ab-initio calculations. Using XAS in transmission geometry on our thin film samples we observe the corresponding reduction of the absorption feature as predicted by theoretical calculations. The XMCD analysis shows the orbital contribution of the Ni electrons to be responsible for the magnetic anisotropy.


Sign in / Sign up

Export Citation Format

Share Document