Sodium Butyrate Protects the Intestinal Barrier by Modulating Intestinal Host Defense Peptide Expression and Gut Microbiota after a Challenge with Deoxynivalenol in Weaned Piglets

2020 ◽  
Vol 68 (15) ◽  
pp. 4515-4527 ◽  
Author(s):  
Shuai Wang ◽  
Cong Zhang ◽  
Jiacheng Yang ◽  
Xu Wang ◽  
Kuntan Wu ◽  
...  
Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 541 ◽  
Author(s):  
Shuai Wang ◽  
Jiacheng Yang ◽  
Beiyu Zhang ◽  
Kuntan Wu ◽  
Ao Yang ◽  
...  

Host defense peptides (HDPs) are efficient defense components of the innate immune system, playing critical roles in intestinal homeostasis and protection against pathogens. This study aims to investigate the interference effects of DON on the intestinal porcine HDPs expression in piglets and intestinal porcine epithelial cell line (IPEC-J2) cells, and elucidate the underlying mechanisms through which it functions. In an animal experiment, intestinal HDPs were determined in weaned piglets fed control and 1.28 mg/kg or 2.89 mg/kg DON-contaminated diets. Dietary exposure to DON significantly decreased piglet average daily gain, increased intestinal permeability and depressed the expression of porcine β-defensin1 (pBD1), pBD2, pBD3, epididymis protein 2 splicing variant C (pEP2C), PMAP23, and proline/arginine-rich peptide of 39 amino acids (PR39) in the intestine (p < 0.05). In IPEC-J2 cells, DON decreased cell viability and inhibited the expression of pBD1, pBD3, pEP2C, PG1-5, and PR39 (p < 0.05). NOD2, key regulator that is responsible for HDPs production, was markedly downregulated, whereas caspase-12 was activated in the presence of DON. In conclusion, DON induced caspase-12 activation and inhibited the NOD2-mediated HDPs production, which led to an impaired intestinal barrier integrity of weaned piglets. Our study provides a promising target for future therapeutic strategies to prevent the adverse effects of DON.


Nutrients ◽  
2017 ◽  
Vol 9 (6) ◽  
pp. 559 ◽  
Author(s):  
Hongbin Liu ◽  
Chengli Hou ◽  
Gang Wang ◽  
Hongmin Jia ◽  
Haitao Yu ◽  
...  

2022 ◽  
Author(s):  
Yanan Gao ◽  
Qingwei Meng ◽  
Xin Song ◽  
Qianqian Zhao ◽  
Baoming Shi

Abstract Background: The objective of this study was to investigate the effects of dietary resveratrol supplementation on growth performance, redox status, inflammatory state, and intestinal function of weaned piglets fed oxidized soybean oils.Methods: A total of twenty-eight castrated weaned male piglets with a similar body weight of 10.19 ±1 kg were randomly assigned to 4 dietary treatments for 28 days feeding trial with 7 replications per treatment and 1 piglet per replicate. Treatments were arranged as a 2×2 factorial with oil type [fresh soybean oils (FSOs) vs. oxidized soybean oils (OSOs)] and dietary resveratrol (RES) (0 vs. 300 mg/kg).Result: Inclusion of OSOs decreased the villus/crypt ratio (VCR), while the villus height (VH) and VCR in the jejunum of weaned piglets was increased by dietary RES (P< 0.05). The activities of lipase, chymotrypsin, and lactase were decreased by OSOs, however dietary RES supplementation increased the activities of lipase, chymotrypsin, lactase, and α-amylase in the jejunum of weaned piglets (P< 0.05). Dietary RES increased the apparent digestibility of crude fat (EE). Dietary RES supplementation in the diets supplemented with OSOs decreased the level of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in the plasma of weaned piglets, but failed to influence the IL-1β, IL-6, IL-8, and TNF-α level when diets supplemented with FSOs. Dietary RES alleviated the decrease of total-superoxide dismutase activity in the plasma of weaned piglets fed OSOs (P< 0.05). Dietary supplemented with OSOs and RES decreased the level of H2O2 in the plasma of weaned piglets (P< 0.05). RES alleviates the intestinal barrier damage fed OSOs in weaned piglets by increasing the mRNA expression of ZO-1 and Occludin. It is noteworthy that inclusion of OSOs in diets increased the abundance of Actinobacteria, and decreased the abundance of Tenercutes (P< 0.05). RES increased the abundance of Firmicutes, and decreased the abundance of Bacteroidetes (P< 0.05). At the genus level, RES decreased the abundance of Prevotella-1, Prevotellaceae UCG003, and Clostridium_sensu_stricto_6 in the colon. OSOs decreased the level of acetic acid, and dietary RES increased the level of acetic acid and butyric acid in the colon of weaned piglets.Conclusions: Dietary RES supplementation improved the villus-crypt structure, digestive enzyme activities and alleviated OSOs induced digestive absorption disorder. In addition, RES may alleviate OSOs immune status and energy metabolism of weaned piglets by affecting gut microbiota and its metabolite SCFAs. Notably, this positive effect of RES on OSOs may be related to decrease in the abundance of Prevotella_1 and Prevotellaceae_UCG-003.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yongdi Zeng ◽  
Zirui Wang ◽  
Tiande Zou ◽  
Jun Chen ◽  
Guanhong Li ◽  
...  

This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P &gt; 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P &lt; 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P &lt; 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P &lt; 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P &lt; 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P &gt; 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P &lt; 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.


Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1154 ◽  
Author(s):  
Xiujing Dou ◽  
Nan Gao ◽  
Di Yan ◽  
Anshan Shan

Inflammatory bowel disease (IBD) develops as a result of complicated interactions between genetic susceptibility, excessive innate immunity, and environmental factors, which are mainly related to the gut microbiota. The present study aimed to elucidate the protective effects and underlying mechanisms of a short-chain fatty acid salt, sodium butyrate, on colonic inflammation induced by dextran sulfate sodium (DSS) in mice. Pretreatment with sodium butyrate attenuated colitis, as demonstrated by the decreased disease activity index (DAI), colon length shortening, spleen tumidness, and histopathology scores, while maintaining intestinal barrier integrity, as observed by H&E staining and electron microscopy. 16S rRNA sequence analysis revealed that sodium butyrate caused a remarkable alteration of the gut microbiota. Bacteroides, Lachnospiraceae, the Lachnospiraceae NK4A136 group, and Ruminiclostridium 6 presented dramatic differences after sodium butyrate supplementation. This work verifies that sodium butyrate can improve mouse colitis via microbe–host interactions by regulating the microbial community. Taken together, the findings demonstrate that sodium butyrate shows great potential as a probiotic agent for ameliorating colitis.


Sign in / Sign up

Export Citation Format

Share Document