Pharmacokinetic Profile of Eight Phenolic Compounds and Their Conjugated Metabolites after Oral Administration of Rhus verniciflua Extracts in Rats

2015 ◽  
Vol 63 (22) ◽  
pp. 5410-5416 ◽  
Author(s):  
Ming Ji Jin ◽  
In Sook Kim ◽  
Jong Suk Park ◽  
Mi-Sook Dong ◽  
Chun-Soo Na ◽  
...  
2019 ◽  
Vol 15 (4) ◽  
pp. 338-345
Author(s):  
Lijun Ni ◽  
Lu Ding ◽  
Liguo Zhang ◽  
Shaorong Luan

Background: Tong-Bi-Si-Wei-Fang (TBSWF) is a candidate formula of Traditional Chinese Medicine (TCM) for treating rheumatoid bone diseases, which is composed of rhizoma corydalis alkaloids, saponins of glycyrrhiza uralensis and panax notoginseng, flavonoids of rhizoma drynariae and glycyrrhiza uralensis. </P><P> Objective: Trahydropalmatine (THP), the main active ingredient of rhizoma corydalis alkaloids, was selected to study in vivo pharmacokinetics and druggability of TBSWF. Methods: The plasma concentration-time (C-T) profiles of THP and the pharmacokinetic property parameters after oral administration of THP monomer, extract of corydalis alkaloids (ECA) and TBSWF to rats, respectively were compared by a fully-validated HPLC method. Results: Compared to the THP monomer, the THP in TBSWF is absorbed faster, resides in the plasma longer and has a similar apparent volume of distribution Vz/F (10~20 L/kg). Compared to THP monomer and THP in TBSWF, the area under the concentration-time curve AUC 0-t of THP in ECA decreases two-third; Vz/F of THP in ECA (85.02 L/kg) is significantly higher than that of THP in TBSWF(p <0.05). Unlike THP monomer and THP in ECA, double peaks are observed in the C-T profile of THP after oral administration of TBSWF. THP in TBSWF exhibits slow release to a certain degree. Conclusion: The interactions among the ingredients of TBSWF promote the adsorption and prolong the residence time of THP in vivo, and provide an explanation for the advantages of TBSWF from the point of pharmacokinetics.


2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Rosario Russo ◽  
Angelo Mancinelli ◽  
Michele Ciccone ◽  
Fabio Terruzzi ◽  
Claudio Pisano ◽  
...  

Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (μSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach Cmax (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t1/2), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with μSMIN Plus™ compared with animals treated with micronized diosmin. In particular, μSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for μSMIN Plus™, which may represent a new tool for CVI management.


2016 ◽  
Vol 4 (2) ◽  
pp. 150
Author(s):  
Mohamed El-Hewaity

The disposition kinetic of tilmicosin (25mg/kg) was studied following oral administration alone, pretreated with amprolium (240 ppm), pretreated with diclazuril (2.5 ppm) and pretreated with toltrazuril (25 ppm) in broiler chickens. The serum tilmicosin concentrations were determined by microbiological assay technique using Bacillus subtilis (ATCC 6633) as the test organism. Following oral administration of tilmicosin, the disposition curve was best described by two-compartment open model. The maximum serum concentration (Cmax) was 1.90 ± 0.11, 1.27 ± 0.13, 1.50 ± 0.14 and 1.41 ± 0.11µg/ml for tilmicosin alone and in the presence of amprolium, diclazuril and toltrazuril, respectively. The elimination half-life (T0.5 (el)) was significantly decreased (5.28 ± 0.30, 5.88 ± 0.33, 6.03 ± 0.25 h, respectively) in amprolium, diclazuril and toltrazuril pretreated broiler chicken compared to tilmicosin alone (7.30 ± 0.41 h). The outcomes illustrated a significant decrease in the interval between doses in amprolium, diclazuril and toltrazuril pretreated broiler chicken compared to tilmicosin alone. Amprolium diclazuril and toltrazuril, resulted in a significance decrease in AUC (12.02 ± 1.14, 15.50 ± 1.26 and 14.56 ± 1.46 µg.h.ml-1, respectively) compared to tilmicosin alone (21.98±1.83 µg.h.ml-1). It is concluded that the administration of amprolium, diclazuril and toltrazuril before tilmicosin would altered its pharmacokinetic profile in broiler chicken.


1978 ◽  
Vol 45 (3) ◽  
pp. 821-835 ◽  
Author(s):  
M.J. McKenna ◽  
J.A. Zempel ◽  
E.O. Madrid ◽  
W.H. Braun ◽  
P.J. Gehring

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Giovanna Petrangolini ◽  
Fabrizio Corti ◽  
Massimo Ronchi ◽  
Lolita Arnoldi ◽  
Pietro Allegrini ◽  
...  

Objective. To evaluate in vitro solubility, bioaccessibility, and cytotoxic profile, together with a pharmacokinetic profile by oral administration to healthy volunteers of a novel food-grade berberine formulation (BBR-PP, i.e., berberine Phytosome®). Results. An in vitro increase of solubility in simulated gastric and intestinal fluids and an improved bioaccessibility at intestinal level along with a lower cytotoxicity with respect to berberine were observed with BBR-PP. The pharmacokinetic profile of the oral administration to healthy volunteers confirmed that berberine Phytosome® significantly ameliorated berberine absorption, in comparison to unformulated berberine, without any observed side effects. The berberine plasma concentrations observed with both doses of BBR-PP were significantly higher than those seen after unformulated berberine administration, starting from 45 min (free berberine) and 30 min (total berberine). Furthermore, BBR-PP improved berberine bioavailability (AUC) was significantly higher, around 10 times on molar basis and with observed dose linearity, compared to the unformulated berberine. Conclusion. These findings open new perspectives on the use of this healthy berberine formulation in metabolic discomforts.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cecilia Nwadiuto Amadi ◽  
Wisdom Izuchukwu Nwachukwu

Abstract Background Cola nitida is commonly chewed in many West African cultures to ease hunger pangs and sometimes for their stimulant and euphoriant qualities. Metoclopramide is a known substrate for P-gp, SULT2A1 and CYP2D6 and studies have revealed that caffeine- a major component of Cola nitida can induce P-glycoprotein (P-gp), SULT2A1 and SULT1A1, hence a possible drug interaction may occur on co-administration. The aim of this study was to investigate the pharmacokinetic interactions of Cola nitida and metoclopramide in rabbits. Methods The study was performed in two stages using five healthy male rabbits with a 1-week washout period between treatments. Stage one involved oral administration of metoclopramide (0.5 mg/kg) alone while in the second stage, metoclopramide (0.5 mg/kg) was administered concurrently with Cola nitida (0.7 mg/kg). Blood samples were collected after each stage at predetermined intervals and analyzed for plasma metoclopramide concentration using HPLC. Results Compared with control, the metoclopramide/Cola nitida co-administration produced a decrease in plasma concentration of metoclopramide at all the time intervals except at the 7th hour. The following pharmacokinetic parameters were also decreased: area under the curve (51%), peak plasma concentration (39%), half-life (51%); while an increase in elimination rate constant (113%) and clearance rate (98%) were noted indicating rapid elimination of the drug. A minimal decrease in absorption rate (10%) was also observed. Conclusions The results of this study reveal a possible herb-drug interaction between Cola nitida and metoclopramide.


Antibiotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 134 ◽  
Author(s):  
Prawez Alam ◽  
Muzaffar Iqbal ◽  
Essam Ezzeldin ◽  
Nasr Y. Khalil ◽  
Ahmed I. Foudah ◽  
...  

Delafloxacin (DLX) is a recently-approved fluoroquinolone antibiotic, which is recommended for the treatment of “acute bacterial skin and skin structure infections”. A thorough literature survey revealed only a single published method for the estimation of DLX using UPLC-MS/MS technique in biological samples. There is no high-performance thin-layer chromatography (HPTLC) method has been reported for the estimation of DLX in dosage forms and/or biological samples. Therefore, a selective, sensitive, rapid and validated HPTLC-densitometry technique has been used for the estimation of DLX in human plasma for the first time. HPTLC quantification of DLX and internal standard (IS; gatifloxacin) was carried out on glass coated silica gel 60 F254 HPTLC plates using the ternary mixture of ethyl acetate:methanol:ammonia solution 5:4:2 (%, v/v/v) as the mobile phase. Densitometric detection was done at 344 nm. The Rf values were recorded as 0.43 and 0.27 for the DLX and the IS, respectively. The linearity range of DLX was obtained as 16–400 ng/band. A simple protein precipitation method was used for the extraction of analyte from plasma using methanol. The proposed HPTLC technique was validated for “linearity, accuracy, precision, and robustness”. The proposed HPTLC technique was successfully utilized for the assessment of pharmacokinetic profile of DLX in rats after oral administration. After oral administration, the peak plasma concentration of DLX was obtained as 194.19 ng/ml in 1 h. The proposed HPTLC method could be applied in study of pharmacokinetic profile and therapeutic drug monitoring of DLX in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document