scholarly journals Human Milk Oligosaccharides in Colostrum and Mature Milk of Chinese Mothers: Lewis Positive Secretor Subgroups

2018 ◽  
Vol 66 (27) ◽  
pp. 7036-7043 ◽  
Author(s):  
M. Elwakiel ◽  
J. A. Hageman ◽  
W. Wang ◽  
I. M. Szeto ◽  
J. B. van Goudoever ◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2684 ◽  
Author(s):  
Sander S. van Leeuwen

Human milk oligosaccharides have been recognized as an important, functional biomolecule in mothers’ milk. Moreover, these oligosaccharides have been recognized as the third most abundant component of human milk, ranging from 10–15 g/L in mature milk and up to and over 20 g/L reported in colostrum. Initially, health benefits of human milk oligosaccharides were assigned via observational studies on the differences between breastfed and bottle fed infants. Later, pools of milk oligosaccharides were isolated and used in functional studies and in recent years more specific studies into structure–function relationships have identified some advanced roles for milk oligosaccharides in the healthy development of infants. In other research, the levels, diversity, and complexity of human milk oligosaccharides have been studied, showing a wide variation in results. This review gives a critical overview of challenges in the analysis of human milk oligosaccharides. In view of the myriad functions that can be assigned, often to specific structures or classes of structures, it is very relevant to assess the levels of these structures in the human milk correctly, as well as in other biological sample materials. Ultimately, the review makes a case for a comparative, inter-laboratory study on quantitative human milk oligosaccharide analysis in all relevant biological samples.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Yaqiang Bai ◽  
Jia Tao ◽  
Jiaorui Zhou ◽  
Qingjie Fan ◽  
Man Liu ◽  
...  

ABSTRACT The milk glycobiome has a significant impact on the gut microbiota of infants, which plays a pivotal role in health and development. Fucosylated human milk oligosaccharides (HMOs) and N-glycans on milk proteins are beneficial for the development of healthy gut microbiota, and the fucosylation levels of these glycans can be affected by the maternal fucosyltransferase 2 gene (FUT2). Here, we present results of longitudinal research on paired milk and stool samples from 56 Chinese mothers (CMs) and their breast-fed children. Changes of HMOs and fucosylated N-glycans in milk of CMs at different lactation stages were detected, which allowed characterization of the major differences in milk glycans and consequential effects on the gut microbiome of infants according to maternal FUT2 status. Significant differences in the abundance of total and fucosylated HMOs between secretor and nonsecretor CMs were noted, especially during early lactation. Despite a tendency toward decreasing milk protein concentrations, the fucosylation levels of milk N-glycans increased during late lactation. The changes in the levels of fucosylated HMOs and milk N-glycans were highly correlated with the growth of Bifidobacterium spp. and Lactobacillus spp. in the gut of infants during early and later lactation, respectively. Enriched expression of genes encoding glycoside hydrolases, glycosyl transferases, ATP-binding cassette (ABC) transporters, and permeases in infants fed by secretor CMs contributed to the promotion of these bacteria in infants. Our data highlight the important role of fucosylated milk glycans in shaping the gut microbiome of infants and provide a solid foundation for development of “personalized” nutrition for Chinese infants. IMPORTANCE Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3198
Author(s):  
Yingying He ◽  
Zhicheng He ◽  
Serena Leone ◽  
Shubai Liu

Exosomes are abundance in human body fluids like urine, milk and blood. They act a critical role in extracellular and intracellular communication, intracellular trafficking and physiological regulation. Multiple immune-modulatory components, such as proteins, RNAs and carbohydrates (glycoproteins), have been found in human milk exosomes, which play immune-regulatory functions. However, little is known about oligosaccharides in milk exosomes, the “free sugars”, which act critical roles in the development of infant’s immature mucosal immune system. In this study, the profile of milk exosomes encapsulated human milk oligosaccharides (HMOs) was calibrated with characteristic oligosaccharides in colostrum and mature milk, respectively. The exosomes containing human milk oligosaccharides were uptaken by macrophages, which were responsible for the establishment of intestinal immunity. Furthermore, mice pretreated with exosome encapsulated HMOs were protected from AIEC infection and had significantly less LPS-induced inflammation and intestinal damage. Exosome encapsulated milk oligosaccharides are regarded to provide a natural manner for milk oligosaccharides to accomplish their critical functions in modifying newborn innate immunity. The understanding of the interaction between a mother’s breastfeeding and the development of an infant’s mucosal immune system would be advantageous. The transport of milk oligosaccharides to its target via exosome-like particles appears to be promising.


2020 ◽  
Vol 4 (8) ◽  
Author(s):  
Jiayi Wu ◽  
Shaohui Wu ◽  
Jinhong Huo ◽  
Hongbo Ruan ◽  
Xiaofei Xu ◽  
...  

ABSTRACT Background Human milk oligosaccharides (HMOs) in breast milk contribute to the development of the neonatal microbiota and immune system. However, longitudinal studies examining HMO profiles of Chinese mothers remain scarce. Objectives We aimed to analyze HMO profiles, including their composition, concentrations, and changes during lactation, in milk of Chinese mothers. Methods A total of 822 milk samples from 222 mothers were collected, of which 163 mothers provided single samples. Samples from the remaining 59 mothers were collected on day 3, day 7, and thereafter every 7 or 14 d until day 168. 24 HMOs were studied using high-performance anion-exchange chromatography. Secretor and nonsecretor status were determined based on Lewis blood types and a defined 2′-fucosyllactose (2′-FL) threshold. Results Of the 222 mothers, 77% were secretors and 23% were nonsecretors. The longitudinal study involving 59 mothers showed that the total HMOs in secretors were significantly greater than those in nonsecretors during the first 2 wk. Acidic HMOs decreased significantly during lactation and were similar between secretors and nonsecretors. Among neutral HMOs, distinctive differences were observed. Nonfucosylated and α-1-3/4-fucosylated HMOs in nonsecretors were significantly higher than those in secretors during the first month. In contrast, α-1-2-fucosylated HMOs in secretors were significantly higher than those in nonsecretors throughout 168 d. In secretors, 2′-FL concentrations peaked at (mean ± SEM) 3.02 ± 0.14 g/L (day 3) followed by significant decreases. In nonsecretors, 2′-FL concentrations were fairly low throughout 168 d. Of the 24 studied HMOs, only 3-fucosyllactose concentrations increased during lactation in both secretor and nonsecretor mothers. Conclusions Our study showed dynamic changes of 24 HMOs in secretors and nonsecretors during lactation and revealed unique features of these HMO profiles in the milk of Chinese mothers. Interestingly, 2′-FL concentrations in secretors were found to be lower than those of Western populations but higher than those of African populations.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lianghui Cheng ◽  
Mensiena B. G. Kiewiet ◽  
Madelon J. Logtenberg ◽  
Andre Groeneveld ◽  
Arjen Nauta ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 739
Author(s):  
Ulvi K. Gürsoy ◽  
Krista Salli ◽  
Eva Söderling ◽  
Mervi Gürsoy ◽  
Johanna Hirvonen ◽  
...  

Human milk oligosaccharides (HMOs), the third largest solid fraction in human milk, can modulate inflammation through Toll-like receptor signaling, but little is known about their immunomodulatory potential in the oral cavity. In this study, we determined whether the HMOs 2’-fucosyllactose (2’-FL) and 3-fucosyllactose (3-FL) regulate human-beta defensin (hBD)-2 and -3, cathelicidin (hCAP18/LL-37), and cytokine responses in human gingival cells using a three-dimensional oral mucosal culture model. The model was incubated with 0.1% or 1% 2’-FL and 3-FL, alone and in combination, for 5 or 24 h, and hBD-2, hBD-3, and hCAP18/LL-37 were analyzed by immunohistochemistry. The expression profiles of interleukin (IL)-1, IL-1RA, IL-8, and monocyte chemoattractant protein (MCP)-1 were determined by LUMINEX immunoassay. The combination of 1% 2’-FL and 1% 3-FL, and 1% 3-FL alone, for 24 h upregulated hBD-2 protein expression significantly (p < 0.001 and p = 0.016, respectively). No changes in the other antimicrobial peptides or proinflammatory cytokines were observed. Thus, 3-FL, alone and in combination with 2´-FL, stimulates oral mucosal secretion of hBD-2, without effecting a proinflammatory response when studied in an oral mucosal culture model.


Sign in / Sign up

Export Citation Format

Share Document