One-Step Facile Synthesis of Nitrogen-Doped Carbon Dots: A Ratiometric Fluorescent Probe for Evaluation of Acetylcholinesterase Activity and Detection of Organophosphorus Pesticides in Tap Water and Food

2019 ◽  
Vol 67 (40) ◽  
pp. 11244-11255 ◽  
Author(s):  
Shan Huang ◽  
Jiandong Yao ◽  
Xu Chu ◽  
Yi Liu ◽  
Qi Xiao ◽  
...  
2021 ◽  
Author(s):  
Wenjing Chen ◽  
Jun Fan ◽  
Xianxue Wu ◽  
Dongbao Hu ◽  
Yunying Wu ◽  
...  

In this work, a facile one-step hydrothermal method was developed to synthesize nitrogen-doped carbon dots (N-CDs) using pork liver. The quantum yield of the prepared N-CDs was as high as...


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Lin Liu ◽  
Lu Chen ◽  
Jiangong Liang ◽  
Lingzhi Liu ◽  
Heyou Han

A ratiometric probe for determining ferric ions (Fe3+) was developed based on nitrogen-doped carbon dots (CDs) and rhodamine B isothiocyanate (RhB), which was then applied to selective detection of Fe3+in PB buffer solution, lake water, and tap water. In the sensing system, FePO4particles deposit on the surface of CDs, resulting in larger particles and surface passivation. The fluorescence (FL) intensity and the light scattering (LS) intensity of CDs can be gradually enhanced with the addition of Fe3+, while the FL intensity of RhB remains constant. The ratiometric light intensity of CDs LS and RhB FL was quantitatively in response to Fe3+concentrations in a dynamic range of 0.01–1.2 μM, with a detection limit as low as 6 nM. Other metal ions, such as Fe2+, Al3+, K+, Ca2+, and Co2+, had no significant interference on the determination of Fe3+. Compared with traditional probes based on single-signal probe for Fe3+detection, this dual-signal-based ratiometric probe exhibits a more reliable and stable response on target concentration and is characterized by easy operation in a simple fluorescence spectrophotometer.


The Analyst ◽  
2014 ◽  
Vol 139 (7) ◽  
pp. 1692-1696 ◽  
Author(s):  
Weiping Wang ◽  
Ya-Chun Lu ◽  
Hong Huang ◽  
Jiu-Ju Feng ◽  
Jian-Rong Chen ◽  
...  

A simple and green hydrothermal method was developed for preparation of water-soluble nitrogen-doped carbon dots (N-CDs) from streptomycin. The prepared N-CDs reveal low toxicity, high stability and good biocompatibility, which can be used as fluorescent probes for cell imaging.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wenzhi Yin ◽  
Chaoqun Ma ◽  
Tuo Zhu ◽  
Jiao Gu ◽  
Chun Zhu ◽  
...  

In order to determine the concentration of melamine, nitrogen-doped carbon dots (NCDs) were synthesized in one step as a fluorescent probe. Uric acid and diethylenetriamine were used as carbon source and nitrogen source, respectively. The experimental results showed that the fluorescence of NCDs can be quenched by mercury ions (Hg2+). Due to the strong coordination affinity between the carbon-nitrogen heterocyclic of melamine and Hg2+, part of Hg2+ coordinated with melamine when melamine was mixed with Hg2+. Then, the fluorescence of the added NCDs was quenched by the remaining Hg2+. Therefore, the concentration of melamine could be determined. The results show that the method has high sensitivity in wide measuring range that the linear ranges are 50–400 μg/L and 800–2500 μg/L, and the R2 is 0.997 and 0.988, respectively, with the limit of detection (LOD) of 21.76 μg/L. The NCDs are easy to fabricate, and the detection method is easy to implement. In this study, a new method for melamine detection was established, and the proposed method for melamine detection can provide some insights for food safety detection.


2019 ◽  
Vol 43 (11-12) ◽  
pp. 507-515 ◽  
Author(s):  
Ning Wang ◽  
Xuebing Li ◽  
Xuefang Yang ◽  
Zenglian Tian ◽  
Wei Bian ◽  
...  

Nitrogen-doped carbon dots were synthesized using citric acid monohydrate and glutathione as raw materials. The synthesized nitrogen-doped carbon dots were characterized by multiple analytical techniques, including transmission electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, and fluorescence spectra. The fluorescence intensity of the nitrogen-doped carbon dots gradually quenched with different concentrations of Cu2+ ions. The effect of the pH value, the nitrogen-doped carbon dot concentration, and the reaction time on the fluorescence intensity of the N-CDs-Cu2+ system was investigated, and the experimental conditions were optimized. A rapid and sensitive method for the determination of Cu2+ ions was established that exhibited a good linearity in the concentration range 0.20–200.0 μM with a detection limit of 0.27 nM. Meanwhile, the fluorescence quenching mechanism of the interaction between nitrogen-doped carbon dots and Cu2+ was preliminarily discussed. The method was used to detect trace Cu2+ in tap water and lake water, with recoveries ranging from 98.1% to 102.0%. Furthermore, due to low cytotoxicity and good biocompatibility, nitrogen-doped carbon dots as a probe were also successfully used in bioimaging.


2019 ◽  
Vol 490 ◽  
pp. 592-597 ◽  
Author(s):  
Xue-Chun Yang ◽  
Yun-Ling Yang ◽  
Shao-Lin Zhang ◽  
Yu-Feng Liu ◽  
Si-Jie Fu ◽  
...  

2015 ◽  
Vol 31 (10) ◽  
pp. 971-977 ◽  
Author(s):  
Ying LIU ◽  
Mei LIAO ◽  
Xueling HE ◽  
Xia LIU ◽  
Xingming KOU ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 95054-95060 ◽  
Author(s):  
Qingyan Zhang ◽  
Caihong Zhang ◽  
Zengbo Li ◽  
Jinyin Ge ◽  
Chenzhong Li ◽  
...  

A facile, economical and green one-step hydrothermal method for N-doped CDs was presented by using citric acid as carbon source and urea as nitrogen source. The fluorescence of N-doped CDs quenched dramatically from curcumin via inner filter effect.


Sign in / Sign up

Export Citation Format

Share Document