Cell Wall Integrity of Pulse Modulates the in Vitro Fecal Fermentation Rate and Microbiota Composition

2020 ◽  
Vol 68 (4) ◽  
pp. 1091-1100 ◽  
Author(s):  
Nannan Guan ◽  
Xiaowei He ◽  
Shaokang Wang ◽  
Feitong Liu ◽  
Qiang Huang ◽  
...  
2021 ◽  
Author(s):  
Yanrong Huang ◽  
Sushil Dhital ◽  
Feitong Liu ◽  
Xiong Fu ◽  
Qiang Huang ◽  
...  

Processing induced structural changes of whole foods on regulation of colonic fermentation rate and microbiota composition are least understood and often overlooked. In the present study, intact cotyledon cells from...


1999 ◽  
Vol 19 (11) ◽  
pp. 7651-7660 ◽  
Author(s):  
Christopher P. Mattison ◽  
Scott S. Spencer ◽  
Kurt A. Kresge ◽  
Ji Lee ◽  
Irene M. Ota

ABSTRACT Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity and protein tyrosine phosphatases (PTPs) in yeasts. InSaccharomyces cerevisiae, two PTPs, Ptp2 and Ptp3, inactivate the MAPKs, Hog1 and Fus3, with different specificities. To further examine the functions and substrate specificities of Ptp2 and Ptp3, we tested whether they could inactivate a third MAPK, Mpk1, in the cell wall integrity pathway. In vivo and in vitro evidence indicates that both PTPs inactivate Mpk1, but Ptp2 is the more effective negative regulator. Multicopy expression of PTP2, but not PTP3, suppressed growth defects due to the MEK kinase mutation, BCK1-20, and the MEK mutation,MKK1-386, that hyperactivate this pathway. In addition, deletion of PTP2, but not PTP3, exacerbated growth defects due to MKK1-386. Other evidence supported a role for Ptp3 in this pathway. Expression of MKK1-386 was lethal in the ptp2Δ ptp3Δ strain but not in either single PTP deletion strain. In addition, the ptp2Δ ptp3Δ strain showed higher levels of heat stress-induced Mpk1-phosphotyrosine than the wild-type strain or strains lacking either PTP. The PTPs also showed differences in vitro. Ptp2 was more efficient than Ptp3 at binding and dephosphorylating Mpk1. Another factor that may contribute to the greater effectiveness of Ptp2 is its subcellular localization. Ptp2 is predominantly nuclear whereas Ptp3 is cytoplasmic, suggesting that active Mpk1 is present in the nucleus. Last, PTP2 but not PTP3 transcript increased in response to heat shock in a Mpk1-dependent manner, suggesting that Ptp2 acts in a negative feedback loop to inactivate Mpk1.


2019 ◽  
Vol 10 (8) ◽  
pp. 4674-4684 ◽  
Author(s):  
Konstantinos Korompokis ◽  
Niels De Brier ◽  
Jan A. Delcour

Intact wheat endosperm cell walls reduce intracellular starch swelling and retard its in vitro digestion by acting as physical barriers to amylolytic enzymes.


2007 ◽  
Vol 6 (12) ◽  
pp. 2260-2268 ◽  
Author(s):  
Hui Zhou ◽  
Hongyan Hu ◽  
Lijuan Zhang ◽  
Ruoyu Li ◽  
Haomiao Ouyang ◽  
...  

ABSTRACT Protein O-mannosyltransferases initiate O mannosylation of secretory proteins, which are of fundamental importance in eukaryotes. In this study, the PMT gene family of the human fungal pathogen Aspergillus fumigatus was identified and characterized. Unlike the case in Saccharomyces cerevisiae, where the PMT family is highly redundant, only one member of each PMT subfamily, namely, Afpmt1, Afpmt2, and Afpmt4, is present in A. fumigatus. Mutants with a deletion of Afpmt1 are viable. In vitro and in vivo activity assays confirmed that the protein encoded by Afpmt1 acts as an O-mannosyltransferase (AfPmt1p). Characterization of the ΔAfpmt1 mutant showed that a lack of AfPmt1p results in sensitivity to elevated temperature and defects in growth and cell wall integrity, thereby affecting cell morphology, conidium formation, and germination. In a mouse model, Afpmt1 was not required for the virulence of A. fumigatus under the experimental conditions used.


J ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Jong Kim ◽  
Kathleen Chan ◽  
Luisa Cheng

Filamentous fungi such as Aspergillus spp. are opportunistic pathogens, which cause highly invasive infections, especially in immunocompromised individuals. Control of such fungal pathogens is increasingly problematic due to the small number of effective drugs available for treatment. Moreover, the increased incidence of fungal resistance to antifungal agents makes this problem a global human health issue. The cell wall integrity system of fungi is the target of antimycotic drugs echinocandins, such as caspofungin (CAS). However, echinocandins cannot completely inhibit the growth of filamentous fungal pathogens, which results in survival/escape of fungi during treatment. Chemosensitization was developed as an alternative intervention strategy, where co-application of CAS with the intervention catalyst octyl gallate (OG; chemosensitizer) greatly enhanced CAS efficacy, thus achieved ≥99.9% elimination of filamentous fungi in vitro. Based on hypersensitive responses of Aspergillus antioxidant mutants to OG, it is hypothesized that, besides destabilizing cell wall integrity, the redox-active characteristic of OG may further debilitate the fungal antioxidant system.


2018 ◽  
Vol 29 (19) ◽  
pp. 2259-2279 ◽  
Author(s):  
Yi-Hua Zhu ◽  
Joanne Hyun ◽  
Yun-Zu Pan ◽  
James E. Hopper ◽  
Josep Rizo ◽  
...  

Cytokinesis is a complicated yet conserved step of the cell-division cycle that requires the coordination of multiple proteins and cellular processes. Here we describe a previously uncharacterized protein, Ync13, and its roles during fission yeast cytokinesis. Ync13 is a member of the UNC-13/Munc13 protein family, whose animal homologues are essential priming factors for soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex assembly during exocytosis in various cell types, but no roles in cytokinesis have been reported. We find that Ync13 binds to lipids in vitro and dynamically localizes to the plasma membrane at cell tips during interphase and at the division site during cytokinesis. Deletion of Ync13 leads to defective septation and exocytosis, uneven distribution of cell-wall enzymes and components of cell-wall integrity pathway along the division site and massive cell lysis during cell separation. Interestingly, loss of Ync13 compromises endocytic site selection at the division plane. Collectively, we find that Ync13 has a novel function as an UNC-13/Munc13 protein in coordinating exocytosis, endocytosis, and cell-wall integrity during fission yeast cytokinesis.


Author(s):  
Jong H. Kim ◽  
Kathleen L. Chan ◽  
Luisa W. Cheng

Filamentous fungi such as Aspergillus spp. are opportunistic pathogens, which cause highly invasive infections, especially in immunocompromised individuals. Control of such fungal pathogens is increasingly problematic due to the small number of effective drugs available for treatment. Moreover, the increased incidence of fungal resistance to antifungal agents makes this problem a global human health issue. The cell wall integrity system of fungi is the target of antimycotic drugs echinocandins, such as caspofungin (CAS). However, echinocandins cannot completely inhibit the growth of filamentous fungal pathogens, which results in survival/escape of fungi during treatment. Chemosensitization was developed as an alternative intervention strategy, where co-application of CAS with the intervention catalyst octyl gallate (OG; chemosensitizer) greatly enhanced CAS efficacy, thus achieved ≥ 99.9% elimination of filamentous fungi in vitro. Based on hypersensitive responses of Aspergillus antioxidant mutants to OG, it is hypothesized that, besides destabilizing cell wall integrity, the redox-active characteristic of OG may further debilitate fungal antioxidant system.


2019 ◽  
Vol 59 ◽  
pp. 110-118 ◽  
Author(s):  
Fatma Boukid ◽  
Elena Vittadini ◽  
Federica Lusuardi ◽  
Tommaso Ganino ◽  
Eleonora Carini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document