Problem and Solution of UV–Vis Time-Based Measurements of a Chemical System Involving Gas Product: Application to the Bray–Liebhafsky Oscillatory Reaction

Author(s):  
Ruzica Erceg ◽  
Jelena P. Maksimović ◽  
Maja C. Pagnacco
2018 ◽  
Vol 72 (5) ◽  
pp. 275-283
Author(s):  
Tijana Maksimovic ◽  
Jelena Maksimovic ◽  
Ljubinka Joksovic ◽  
Zoran Nedic ◽  
Maja Pagnacco

Phosphate tungsten bronzes, obtained by thermal treatment, are insufficiently investigated bronzes and there is scarce literature data on their chemical behavior and structure. Due to high-sensitivity of the Briggs-Rauscher (BR) reaction to addition of different analytes, this oscillatory reaction presents a potentially important chemical system for investigation and characterization of phosphate-tungsten bronzes, doped and undoped. The reaction mixture for the oscillatory BR reaction typically consists of H2O2, HClO4, KIO3, Mn(II) (catalyst), and CH2(COOH)2 (malonic acid, as an organic substrate). This paper deals with phosphate tungsten bronzes (PWB) and lithium doped phosphate tungsten bronzes (LiPWB) and their effects on the Briggs-Rauscher reaction dynamics. It is shown that the addition of phosphate tungsten bronzes decreases the oscillatory period length in this reaction. Furthermore, the obtained results show that PWB has a stronger influence on the BR reaction dynamics then LiPWB. In both cases, the oscillatory period is a linear function of the added bronze mass. The obtained linear functions can be successfully used for determination of the unknown bronze mass. Furthermore, due to different slopes of these functions, the Briggs-Rauscher reaction can be used as a system-detector for lithium doped and undoped phosphate tungsten bronzes. In order to elucidate the mechanism of bronze action, the inductively coupled plasma optical emission spectrometry (ICP-OES) was used to measure the total contents of K, Mn, W, Li. The aliquots of the above solution (i.e. CH2(COOH)2, MnSO4, HClO4, KIO3 but without H2O2) with the identical masses of PWB and LiPWB were examined. For the sake of comparison, contents of the metals in the solution without the bronze addition were measured, as well. Results obtained by the ICP-OES analysis show that the bronze structure is disturbed in the strong oxidizing environment (iodate in acidic solution) so that both, tungsten and lithium, leach into the BR solution. Accordingly, the proposed mechanism of the bronze action is probably by the reaction of tungsten ion with hydrogen-peroxide resulting in formation of a tungsten-peroxo complex. This complex is a stronger oxidizing agent then hydrogen peroxide itself. Thus, formation of the tungsten-peroxo complex potentially affects the kinetics of the Briggs-Rauscher reaction.


2019 ◽  
Author(s):  
Mark Workentin ◽  
François Lagugné-Labarthet ◽  
Sidney Legge

In this work we present a clean one-step process for modifying headgroups of self-assembled monolayers (SAMs) on gold using photo-enabled click chemistry. A thiolated, cyclopropenone-caged strained alkyne precursor was first functionalized onto a flat gold substrate through self-assembly. Exposure of the cyclopropenone SAM to UV-A light initiated the efficient photochemical decarbonylation of the cyclopropenone moiety, revealing the strained alkyne capable of undergoing the interfacial strain-promoted alkyne-azide cycloaddition (SPAAC). Irradiated SAMs were derivatized with a series of model azides with varied hydrophobicity to demonstrate the generality of this chemical system for the modification and fine-tuning of the surface chemistry on gold substrates. SAMs were characterized at each step with polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) to confirm successful functionalization and reactivity. Furthermore, to showcase the compatibility of this approach with biochemical applications, cyclopropenone SAMs were irradiated and modified with azide-bearing cell adhesion peptides to promote human fibroblast cell adhesion, then imaged by live cell fluorescence microscopy. Thus, the “photoclick” methodology reported here represents an improved, versatile, catalyst-free protocol that allows for a high degree of control over the modification of material surfaces, with applicability in materials science as well as biochemistry.<br>


2020 ◽  
Author(s):  
Thomas MacDonald ◽  
Timothy Schmidt ◽  
Jonathon Beves

A chemical system is proposed that is capable of amplifying small optical inputs into large changes in internal composition, based on a feedback interaction between switchable fluorescence and visible-light photoswitching. This system would demonstrate bifurcating reaction kinetics under irradiation and reach one of two stable photostationary states depending on the initial composition of the system. This behavior would allow the system to act as a chemical realization of the flip-flop circuit, the fundamental element in sequential logic and binary memory storage. We use detailed numerical modeling to demonstrate the feasibility of the proposed behavior based on known molecular phenomena, and comment on some of the conditions required to realize this system.


Author(s):  
John Ross ◽  
Igor Schreiber ◽  
Marcel O. Vlad

In a chemical system with many chemical species several questions can be asked: what species react with other species: in what temporal order: and with what results? These questions have been asked for over one hundred years about simple and complex chemical systems, and the answers constitute the macroscopic reaction mechanism. In Determination of Complex Reaction Mechanisms authors John Ross, Igor Schreiber, and Marcel Vlad present several systematic approaches for obtaining information on the causal connectivity of chemical species, on correlations of chemical species, on the reaction pathway, and on the reaction mechanism. Basic pulse theory is demonstrated and tested in an experiment on glycolysis. In a second approach, measurements on time series of concentrations are used to construct correlation functions and a theory is developed which shows that from these functions information may be inferred on the reaction pathway, the reaction mechanism, and the centers of control in that mechanism. A third approach is based on application of genetic algorithm methods to the study of the evolutionary development of a reaction mechanism, to the attainment given goals in a mechanism, and to the determination of a reaction mechanism and rate coefficients by comparison with experiment. Responses of non-linear systems to pulses or other perturbations are analyzed, and mechanisms of oscillatory reactions are presented in detail. The concluding chapters give an introduction to bioinformatics and statistical methods for determining reaction mechanisms.


2011 ◽  
Vol 115 (14) ◽  
pp. 3959-3963 ◽  
Author(s):  
Kouichi Asakura ◽  
Ryo Konishi ◽  
Tomomi Nakatani ◽  
Takaya Nakano ◽  
Masazumi Kamata

2020 ◽  
Vol 17 (4) ◽  
pp. 73-80 ◽  
Author(s):  
Vera Snezhko ◽  
Dmitrii Benin ◽  
Artem Lukyanets ◽  
Larisa Kondratenko

Considering features of hydrological conditions for hydro-chemical system, this paper analyses the performance of the hydro-ecological status of the Kuban river basin.. The results of the study on water chemical composition depending on the distance from the source are presented. By comparing the results with the reference values of water quality, increased aluminium, zinc, and copper content was established. Respective dendrograms of hydro-ecological studies obtained according to performed analysis for the Kuban River and its tributaries are presented. The relevance of the findings received is p<0.0005 and the correlation coefficient corresponds to 0.935...1. The results of multivariate cluster analysis showed that the Kuban basin has an increased content of particular heavy metals such as aluminium, copper, and zinc.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1178
Author(s):  
Zhenhua Wang ◽  
Beike Zhang ◽  
Dong Gao

In the field of chemical safety, a named entity recognition (NER) model based on deep learning can mine valuable information from hazard and operability analysis (HAZOP) text, which can guide experts to carry out a new round of HAZOP analysis, help practitioners optimize the hidden dangers in the system, and be of great significance to improve the safety of the whole chemical system. However, due to the standardization and professionalism of chemical safety analysis text, it is difficult to improve the performance of traditional models. To solve this problem, in this study, an improved method based on active learning is proposed, and three novel sampling algorithms are designed, Variation of Token Entropy (VTE), HAZOP Confusion Entropy (HCE) and Amplification of Least Confidence (ALC), which improve the ability of the model to understand HAZOP text. In this method, a part of data is used to establish the initial model. The sampling algorithm is then used to select high-quality samples from the data set. Finally, these high-quality samples are used to retrain the whole model to obtain the final model. The experimental results show that the performance of the VTE, HCE, and ALC algorithms are better than that of random sampling algorithms. In addition, compared with other methods, the performance of the traditional model is improved effectively by the method proposed in this paper, which proves that the method is reliable and advanced.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5836
Author(s):  
Peifeng Cheng ◽  
Yiming Li ◽  
Zhanming Zhang

To improve the thermal-aging stability and rheological performance of styrene–butadiene rubber (SBR)-modified asphalt, phenolic resin (PF) was introduced in the process of preparing SBR-modified asphalt by melt blending. The effect of PF and SBR on the high and low-temperature rheological performance of the asphalt binder before and after aging was evaluated by a temperature and frequency sweep using a dynamic shear rheometer (DSR). Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and fluorescence microscopy (FM) were used to further investigate the effect of PF and SBR on the thermal stability and morphological characteristics of the asphalt binder. The results showed that the addition of PF can enhance the high-temperature deformation resistance and short-term aging resistance of SBR-modified asphalt. Moreover, PF and SBR form an embedded network structure within the asphalt binder and alleviate the deterioration of the polymer during the aging process. Compared with SBR-modified asphalt, the chemical system of composite-modified asphalt is more stable, and it can remain stable with an aging time of less than 5 h.


Sign in / Sign up

Export Citation Format

Share Document