Investigation of the Stability Mechanisms of Eight-Atom Binary Metal Clusters Using DFT Calculations and k-means Clustering Algorithm

Author(s):  
Felipe Orlando Morais ◽  
Karla F. Andriani ◽  
Juarez L. F. Da Silva
2016 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Wan Isni Sofiah Wan Din ◽  
Saadiah Yahya ◽  
Mohd Nasir Taib ◽  
Ahmad Ihsan Mohd Yassin ◽  
Razulaimi Razali

Clustering in Wireless Sensor Network (WSN) is one of the methods to minimize the energy usage of sensor network. The design of sensor network itself can prolong the lifetime of network. Cluster head in each cluster is an important part in clustering to ensure the lifetime of each sensor node can be preserved as it acts as an intermediary node between the other sensors. Sensor nodes have the limitation of its battery where the battery is impossible to be replaced once it has been deployed. Thus, this paper presents an improvement of clustering algorithm for two-tier network as we named it as Multi-Tier Algorithm (MAP). For the cluster head selection, fuzzy logic approach has been used which it can minimize the energy usage of sensor nodes hence maximize the network lifetime. MAP clustering approach used in this paper covers the average of 100Mx100M network and involves three parameters that worked together in order to select the cluster head which are residual energy, communication cost and centrality. It is concluded that, MAP dominant the lifetime of WSN compared to LEACH and SEP protocols. For the future work, the stability of this algorithm can be verified in detailed via different data and energy. 


Wireless Sensor Networks (WSN) is a group of sensor devices, which are used to sense the surroundings. The network performance is still an issue in the WSN and an efficient protocol is introduced such as LEACH. To improve the stability, LEACH with fuzzy descriptors is used in preceding research. However the existing has drawback with effective group formation in heterogeneous WSN and also it is not achieved the Super Leader Node (SLH). To overcome the above mentioned issues, the proposed system enhances the approach which is used for increasing the energy consumption, packet delivery ratio, and bandwidth and network lifetime. The proposed paper contains three phases such as grouping formation, Leader Node (LN) selection, SLN selection with three main objectives:(i) to acquire Energy-Efficient Prediction Clustering Algorithm (EEPCA) in heterogeneous WSN for grouping formation (ii)To design Low Energy Adaptive Clustering Hierarchy- Expected Residual Energy (LEACH-ERE) protocol for LN selection.(iii)To optimize the SCH selection by Particle Swarm Optimization (PSO) based fuzzy approach. The clustering formation is done by Energy-Efficient Prediction Clustering Algorithm (EEPCA) in heterogeneous WSN. It is used to calculate the sensor nodes which have shortest distance between each node. The LEACH-ERE protocol was proposed to form a Leader Node (LN) and all the nodes has to communicate with sink through LN only. New SLN is elected based on distance from the sink and battery power of the node.


The proposed research work aims to perform the cluster analysis in the field of Precision Agriculture. The k-means technique is implemented to cluster the agriculture data. Selecting K value plays a major role in k-mean algorithm. Different techniques are used to identify the number of cluster value (k-value). Identification of suitable initial centroid has an important role in k-means algorithm. In general it will be selected randomly. In the proposed work to get the stability in the result Hybrid K-Mean clustering is used to identify the initial centroids. Since initial cluster centers are well defined Hybrid K-Means acts as a stable clustering technique.


2018 ◽  
Vol 9 (25) ◽  
pp. 5614-5622 ◽  
Author(s):  
Ping Guo ◽  
Biao Yang ◽  
Li Zhang ◽  
Liang Zhao

Three chiral gold cluster compounds are herein selected to probe how structural factors influence the cluster stability upon heating.


Author(s):  
Karla Furtado Andriani ◽  
Priscilla Felício Sousa ◽  
Felipe Orlando Morais ◽  
Juarez L. F. Da Silva

In this work, we report a theoretical investigation of the role of quantum-size effects (QSE) on the dehydrogenation of methane (CH4) on 3d transition-metal clusters, TMn , where TM =...


2021 ◽  
Vol 23 (36) ◽  
pp. 20553-20559
Author(s):  
Han Wang ◽  
Xiao Wang ◽  
Da Li

We performed a systematic study on the defects in PbI2 of both 1T and 1H phases by DFT calculations. The stability at the neutral and charged states was calculated. The impact of the defects on the electronic properties was also discussed.


2020 ◽  
Vol 56 (66) ◽  
pp. 9501-9504
Author(s):  
Kristen A. Pace ◽  
Vladislav V. Klepov ◽  
Matthew S. Christian ◽  
Gregory Morrison ◽  
Travis K. Deason ◽  
...  

The stability of the novel Pu(iv) silicate, Cs2PuSi6O15, was predicted from a combination of crystal chemical reasoning and DFT calculations and confirmed by its synthesis via flux crystal growth.


Author(s):  
S. A. CHIN ◽  
S. JANECEK ◽  
E. KROTSCHECK ◽  
M. LIEBRECHT

2019 ◽  
Vol 57 (4) ◽  
pp. 449
Author(s):  
Trung Tien Nguyen ◽  
Tri Ngoc Nguyen ◽  
Dai Quoc Ho

We investigated the adsorption of enrofloxacin (ENR) antibiotic on rutile-TiO2 (r-TiO2­) (110) surface using DFT calculations. Stable configurations of the adsorption of ENR on r-TiO2 (110) were observed. The origin and role of interactions in stablizing the configurations are thoroughly analyzed using NBO and AIM analyses. Obtained results indicate that the adsorption process is characterized as a strong chemisorption with an associated energy of ca. -35.1 kcal.mol-1 for the most stable configuration. Quantum chemical analysis shows that the stability of configurations is mainly determined by >C=O∙∙∙Ti5f electrostatic interaction along with supplement of H∙∙∙Ob hydrogen bond.


Sign in / Sign up

Export Citation Format

Share Document