scholarly journals Improved Spin-State Energy Differences of Fe(II) Molecular and Crystalline Complexes via the Hubbard U-Corrected Density

Author(s):  
Lorenzo A. Mariano ◽  
Bess Vlaisavljevich ◽  
Roberta Poloni
Keyword(s):  
2005 ◽  
Vol 44 (18) ◽  
pp. 6174-6182 ◽  
Author(s):  
Carmen Herrmann ◽  
Johannes Neugebauer ◽  
John A. Gladysz ◽  
Markus Reiher

2021 ◽  
Author(s):  
Daniel Vidal ◽  
Jordi Ribas-Ariño ◽  
Jordi Cirera

Fe(III) complexes are receiving ever-increasing attention as spin crossover (SCO) systems because they are usually air stable, as opposed to Fe(II) complexes, which are prone to oxidation. Here, we present...


2021 ◽  
Author(s):  
Riddhish Pandharkar ◽  
Matthew R. Hermes ◽  
Christopher J. Cramer ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

Accurate quantum chemical methods for the prediction of spin-state energy gaps for strongly correlated systems are computationally expensive and scale poorly with the size of the system. This makes calculations for many experimentally interesting molecules impractical even with abundant computational resources. In previous work, we have shown that the localized active space (LAS) self-consistent field (SCF) method is an efficient way to obtain multi-configuration SCF wave functions of comparable quality to the corresponding complete active space (CAS) ones. To obtain quantitative results, a post-SCF method is needed to estimate the complete correlation energy. One such method is multiconfiguration pair-density functional theory (PDFT), which calculates the energy based on the density and on-top pair density obtained from a multiconfiguration wave function. In this work we introduce localized-active-space pair-density functional theory, which uses a LAS wave function for subsequent PDFT calculations. The method is tested for computing spin-state energy gaps in conjugated organic molecules and bimetallic compounds and is shown to give results within 0.05 eV of the corresponding CAS-PDFT results at a significantly lower cost.


2021 ◽  
Author(s):  
Riddhish Pandharkar ◽  
Matthew R. Hermes ◽  
Christopher J. Cramer ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

Accurate quantum chemical methods for the prediction of spin-state energy gaps for strongly correlated systems are computationally expensive and scale poorly with the size of the system. This makes calculations for many experimentally interesting molecules impractical even with abundant computational resources. In previous work, we have shown that the localized active space (LAS) self-consistent field (SCF) method is an efficient way to obtain multi-configuration SCF wave functions of comparable quality to the corresponding complete active space (CAS) ones. To obtain quantitative results, a post-SCF method is needed to estimate the complete correlation energy. One such method is multiconfiguration pair-density functional theory (PDFT), which calculates the energy based on the density and on-top pair density obtained from a multiconfiguration wave function. In this work we introduce localized-active-space pair-density functional theory, which uses a LAS wave function for subsequent PDFT calculations. The method is tested for computing spin-state energy gaps in conjugated organic molecules and bimetallic compounds and is shown to give results within 0.05 eV of the corresponding CAS-PDFT results at a significantly lower cost.


2013 ◽  
Vol 111 (9-11) ◽  
pp. 1482-1491 ◽  
Author(s):  
Lynn Groß ◽  
Torben Steenbock ◽  
Carmen Herrmann

Author(s):  
D W McComb ◽  
R S Payne ◽  
P L Hansen ◽  
R Brydson

Electron energy-loss near-edge structure (ELNES) is an effective probe of the local geometrical and electronic environment around particular atomic species in the solid state. Energy-loss spectra from several silicate minerals were mostly acquired using a VG HB501 STEM fitted with a parallel detector. Typically a collection angle of ≈8mrad was used, and an energy resolution of ≈0.5eV was achieved.Other authors have indicated that the ELNES of the Si L2,3-edge in α-quartz is dominated by the local environment of the silicon atom i.e. the SiO4 tetrahedron. On this basis, and from results on other minerals, the concept of a coordination fingerprint for certain atoms in minerals has been proposed. The concept is useful in some cases, illustrated here using results from a study of the Al2SiO5 polymorphs (Fig.l). The Al L2,3-edge of kyanite, which contains only 6-coordinate Al, is easily distinguished from andalusite (5- & 6-coordinate Al) and sillimanite (4- & 6-coordinate Al). At the Al K-edge even the latter two samples exhibit differences; with careful processing, the fingerprint for 4-, 5- and 6-coordinate aluminium may be obtained.


2010 ◽  
Vol 24 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Jan Kaiser ◽  
Anton M. L. Coenen

The study determines the associations between self-report of ongoing emotional state and EEG patterns. A group of 31 hospitalized patients were enrolled with three types of diagnosis: major depressive disorder, manic episode of bipolar affective disorder, and nonaffective patients. The Thayer ADACL checklist, which yields two subjective dimensions, was used for the assessment of affective state: Energy Tiredness (ET) and Tension Calmness (TC). Quantitative analysis of EEG was based on EEG spectral power and laterality coefficient (LC). Only the ET scale showed relationships with the laterality coefficient. The high-energy group showed right shift of activity in frontocentral and posterior areas visible in alpha and beta range, respectively. No effect of ET estimation on prefrontal asymmetry was observed. For the TC scale, an estimation of high tension was related to right prefrontal dominance and right posterior activation in beta1 band. Also, decrease of alpha2 power together with increase of beta2 power was observed over the entire scalp.


Sign in / Sign up

Export Citation Format

Share Document