Red/Green Color Tuning of Visual Rhodopsins: Electrostatic Theory Provides a Quantitative Explanation

2018 ◽  
Vol 122 (18) ◽  
pp. 4828-4837 ◽  
Author(s):  
Florimond Collette ◽  
Thomas Renger ◽  
Frank Müh ◽  
Marcel Schmidt am Busch

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Se-Hwan Kim ◽  
Kimleng Chuon ◽  
Shin-Gyu Cho ◽  
Ahreum Choi ◽  
Seanghun Meas ◽  
...  

AbstractMicrobial rhodopsins are distributed through many microorganisms. Heliorhodopsins are newly discovered but have an unclear function. They have seven transmembrane helices similar to type-I and type-II rhodopsins, but they are different in that the N-terminal region of heliorhodopsin is cytoplasmic. We chose 13 representative heliorhodopsins from various microorganisms, expressed and purified with an N-terminal His tag, and measured the absorption spectra. The 13 natural variants had an absorption maximum (λmax) in the range 530–556 nm similar to proteorhodopsin (λmax = 490–525 nm). We selected several candidate residues that influence rhodopsin color-tuning based on sequence alignment and constructed mutants via site-directed mutagenesis to confirm the spectral changes. We found two important residues located near retinal chromophore that influence λmax. We also predict the 3D structure via homology-modeling of Thermoplasmatales heliorhodopsin. The results indicate that the color-tuning mechanism of type-I rhodopsin can be applied to understand the color-tuning of heliorhodopsin.





1929 ◽  
Vol 41 (2) ◽  
pp. 237 ◽  
Author(s):  
Sibyl Walcutt Terman


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Young-Jae Jin ◽  
Hyosang Park ◽  
Byung-Chun Moon ◽  
Jae Hong Kim ◽  
Wang-Eun Lee ◽  
...  

AbstractThe piezochromic fluorescence (FL) of a distyrylpyrazine derivative, 2,3-diisocyano-5,6-distyrylpyrazine (DSP), was investigated in this study. Depending on the recrystallization method, DSP afforded two different crystals with green and orange FL emission. The orange color FL emission crystal (O-form) was easily converted to the green color FL emission one (G-form) by manual grinding. The G-form was also converted to a slightly different orange color FL emission crystal (RO-form) by a weak UV irradiation. When the RO-form was ground again, the G-form was regenerated. The FL colors changed between the G- and RO-forms over several ten times by repeated mechanical grinding and UV irradiation. The FL, UV–visible, 1H-NMR and XRD results showed that the O (or RO)-to-G transformation induced by mechanical stress results from the change of degree of molecular stacking from dense molecular stacking structure to relatively loose molecular stacking structure, whereas the G-to-RO reconversion by UV irradiation results from return to dense molecular stacking structure again due to lattice movement (lattice slipping) allowed by photocycloaddition in solid-state.



2021 ◽  
pp. 2104923
Author(s):  
Qian Li ◽  
Bin Xu ◽  
Zhongwei Chen ◽  
Jiang Han ◽  
Li Tan ◽  
...  


Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1697-1710 ◽  
Author(s):  
Shozo Yokoyama ◽  
F Bernhard Radlwimmer

Abstract To better understand the evolution of red-green color vision in vertebrates, we inferred the amino acid sequences of the ancestral pigments of 11 selected visual pigments: the LWS pigments of cave fish (Astyanax fasciatus), frog (Xenopus laevis), chicken (Gallus gallus), chameleon (Anolis carolinensis), goat (Capra hircus), and human (Homo sapiens); and the MWS pigments of cave fish, gecko (Gekko gekko), mouse (Mus musculus), squirrel (Sciurus carolinensis), and human. We constructed these ancestral pigments by introducing the necessary mutations into contemporary pigments and evaluated their absorption spectra using an in vitro assay. The results show that the common ancestor of vertebrates and most other ancestors had LWS pigments. Multiple regression analyses of ancestral and contemporary MWS and LWS pigments show that single mutations S180A, H197Y, Y277F, T285A, A308S, and double mutations S180A/H197Y shift the λmax of the pigments by −7, −28, −8, −15, −27, and 11 nm, respectively. It is most likely that this “five-sites” rule is the molecular basis of spectral tuning in the MWS and LWS pigments during vertebrate evolution.



2021 ◽  
Vol 11 (6) ◽  
pp. 2828
Author(s):  
Byoung-Seong Jeong

In this study, the optimal structure for obtaining high green color purity was investigated by modeling quantum dot (QD)–organic light-emitting diodes (OLED). It was found that even if the green quantum dot (G-QD) density in the G-QD layer was 30%, the full width at half maximum (FWHM) in the green wavelength band could be minimized to achieve a sharp emission spectrum, but it was difficult to completely block the blue light leakage with the G-QD layer alone. This blue light leakage problem was solved by stacking a green color filter (G-CF) layer on top of the G-QD layer. When G-CF thickness 5 μm was stacked, blue light leakage was blocked completely, and the FWHM of the emission spectrum in the green wavelength band was minimized, resulting in high green color purity. It is expected that the overall color gamut of QD-OLED can be improved by optimizing the device that shows such excellent green color purity.



1997 ◽  
Vol 37 (14) ◽  
pp. 1897-1907 ◽  
Author(s):  
Elizabeth Sanocki ◽  
Davida Y. Teller ◽  
Samir S. Deeb


2010 ◽  
Vol 35 (9) ◽  
pp. 1431 ◽  
Author(s):  
Yong Zeng ◽  
Qi Wu ◽  
Douglas H. Werner


2009 ◽  
Vol 82 (9) ◽  
pp. 1140-1148 ◽  
Author(s):  
Kazuhiro Fujimoto ◽  
Jun-ya Hasegawa ◽  
Hiroshi Nakatsuji


Sign in / Sign up

Export Citation Format

Share Document