scholarly journals Computational Characterization of the Dependence of Halide Perovskite Effective Masses on Chemical Composition and Structure

2017 ◽  
Vol 121 (43) ◽  
pp. 23886-23895 ◽  
Author(s):  
Negar Ashari-Astani ◽  
Simone Meloni ◽  
Amir Hesam Salavati ◽  
Giulia Palermo ◽  
Michael Grätzel ◽  
...  
2010 ◽  
Vol 636-637 ◽  
pp. 556-563
Author(s):  
A. Ciocan ◽  
F. Potecasu ◽  
E. Drugescu ◽  
Simona Constantinescu

The paper presents the results of theoretical and experimental research regarding the establishing of some chemical positions of the bearing alloy and of cladding technology. The final properties of the materials depend on the kinetics and thermodynamics of the interface processes. In the paper the diffusion zone developed between the two bimetal materials is revealed and characterized under the aspect of chemical composition and structure. An application for this research that could lead to increasing the endurance of the steel products cladded through welding is the case of boring bits with three cones, which work under short oiling conditions and variations of the contact pressure.


1996 ◽  
Vol 451 ◽  
Author(s):  
S. D. Leith ◽  
D. T. Schwartz

ABSTRACTDescribed are results showing that an oscillating flow-field can induce spatially periodic composition variations in electrodeposited NiFe films. Flow-induced NiFe composition modulated alloys (CMA's) were deposited on the disk of a rotating disk electrode by oscillating the disk rotation rate during galvanostatic plating. Deposit composition and structure were investigated using potentiostatic stripping voltammetry and scanning probe microscopy. Results illustrate a linear relationship between the composition modulation wavelength and the flow oscillation period. CMA's with wavelengths less than 10 nm can be fabricated when plating with a disk rotation rate oscillation period less than 3 seconds.


2016 ◽  
Vol 10 (4s) ◽  
pp. 595-600 ◽  
Author(s):  
Witold Brostow ◽  
◽  
Haley E. Hagg Lobland ◽  

The property of brittleness for polymers and polymer-based materials (PBMs) is an important factor in determining the potential uses of a material. Brittleness of polymers may also impact the ease and modes of polymer processing, thereby affecting economy of production. Brittleness of PBMs can be correlated with certain other properties and features of polymers; to name a few, connections to free volume, impact strength, and scratch recovery have been explored. A common thread among all such properties is their relationship to chemical composition and morphology. Through a survey of existing literature on polymer brittleness specifically combined with relevant reports that connect additional materials and properties to that of brittleness, it is possible to identify chemical features of PBMs that are connected with observable brittle behavior. Relations so identified between chemical composition and structure of PBMs and brittleness are described herein, advancing knowledge and improving the capacity to design new and to choose among existing polymers in order to obtain materials with particular property profiles.


2020 ◽  
pp. 34-39
Author(s):  
Aneta Antczak-Chrobot ◽  
Maciej Wojtczak

In this research paper, development of a procedure of isolation of exopolysaccharides from frost-damaged beet and an analysis of structural and chemical composition of polymers isolated from sugar beet of different origin are presented. Total acid hydrolysis degradation integrated with HPAEC-ED analysis has been utilized to confirm the monomeric composition of the separated polysaccharides. The implementation of NMR spectral analysis and SEC chromatography of the structure of exopolysaccharides has been investigated. The results demonstrate that the chemical composition and structure of exopolysaccharides depend on their origin. Typical exopolysaccharides from Central European beet roots consist mainly of glucose monomers – and they have low branched structure – about 90% of α-1,6 linkage which is typical for dextran. The exopolysaccharides isolated from Swedish beet are characterized by 50–60% fructose monomers. They contain only about 65% α-1,6 linkages. Exopolysaccharides extracted from various origin beet differ in average molecular mass. The molecular distribution is not normal.


2021 ◽  
Vol 7 (7) ◽  
pp. 559
Author(s):  
Yaping Wang ◽  
Yuhang Fu ◽  
Yuanyuan He ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mudassar Iqbal ◽  
...  

Development phases are important in maturing immune systems, intestinal functions, and metabolism for the construction, structure, and diversity of microbiome in the intestine during the entire life. Characterizing the gut microbiota colonization and succession based on age-dependent effects might be crucial if a microbiota-based therapeutic or disease prevention strategy is adopted. The purpose of this study was to reveal the dynamic distribution of intestinal bacterial and fungal communities across all development stages in yaks. Dynamic changes (a substantial difference) in the structure and composition ratio of the microbial community were observed in yaks that matched the natural aging process from juvenile to natural aging. This study included a significant shift in the abundance and proportion of bacterial phyla (Planctomycetes, Firmicutes, Bacteroidetes, Spirochaetes, Tenericutes, Proteobacteria, and Cyanobacteria) and fungal phyla (Chytridiomycota, Mortierellomycota, Neocallimastigomycota, Ascomycota, and Basidiomycota) across all development stages in yaks. As yaks grew older, variation reduced, and diversity increased as compared to young yaks. In addition, the intestine was colonized by a succession of microbiomes that coalesced into a more mature adult, including Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-004, Blautia, Clostridium_sensu_stricto_1, Ruminococcus_1, Ruminiclostridium_5, Rikenellaceae_RC9_gut_group, Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group, Bacteroides, Treponema_2, Olsenella, Escherichia-Shigella, Candidatus_Saccharimonas, and fungal communities Mortierella, Lomentospora, Orpinomyces, and Saccharomyces. In addition, microorganisms that threaten health, such as Escherichia-Shigella, Mortierella, Lomentospora and Hydrogenoanaerobacterium, Corynebacterium_1, Trichosporon, and Coprinellus, were enriched in young and old yaks, respectively, although all yaks were healthy. The significant shifts in microflora composition and structure might reflect adaptation of gut microbiome, which is associated with physicochemical conditions changes and substrate availability in the gut across all development periods of yaks.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3255
Author(s):  
Lenka Kunčická ◽  
Michal Jambor ◽  
Adam Weiser ◽  
Jiří Dvořák

Cu–Zn–Pb brasses are popular materials, from which numerous industrially and commercially used components are fabricated. These alloys are typically subjected to multiple-step processing—involving casting, extrusion, hot forming, and machining—which can introduce various defects to the final product. The present study focuses on the detailed characterization of the structure of a brass fitting—i.e., a pre-shaped medical gas valve, produced by hot die forging—and attempts to assess the factors beyond local cracking occurring during processing. The analyses involved characterization of plastic flow via optical microscopy, and investigations of the phenomena in the vicinity of the crack, for which we used scanning and transmission electron microscopy. Numerical simulation was implemented not only to characterize the plastic flow more in detail, but primarily to investigate the probability of the occurrence of cracking based on the presence of stress. Last, but not least, microhardness in specific locations of the fitting were examined. The results reveal that the cracking occurring in the location with the highest probability of the occurrence of defects was most likely induced by differences in the chemical composition; the location the crack in which developed exhibited local changes not only in chemical composition—which manifested as the presence of brittle precipitates—but also in beta phase depletion. Moreover, as a result of the presence of oxidic precipitates and the hard and brittle alpha phase, the vicinity of the crack exhibited an increase in microhardness, which contributed to local brittleness.


Sign in / Sign up

Export Citation Format

Share Document