High Thermoelectric Figure of Merit via Tunable Valley Convergence Coupled Low Thermal Conductivity in AIIBIVC2VChalcopyrites

2018 ◽  
Vol 122 (51) ◽  
pp. 29150-29157 ◽  
Author(s):  
Madhubanti Mukherjee ◽  
George Yumnam ◽  
Abhishek K. Singh
Author(s):  
Jean-Numa Gillet ◽  
Sebastian Volz

The design of thermoelectric materials led to extensive research on superlattices with a low thermal conductivity. Indeed, the thermoelectric figure of merit ZT varies with the inverse of the thermal conductivity but is directly proportional to the power factor. Unfortunately, as nanowires, superlattices cancel heat conduction in only one main direction. Moreover they often show dislocations owing to lattice mismatches, which reduces their electrical conductivity and avoids a ZT larger than unity. Self-assembly is a major epitaxial technology to design ultradense arrays of germanium quantum dots (QDs) in silicon for many promising electronic and photonic applications as quantum computing. Accurate positioning of the self-assembled QD can now be achieved with few dislocations. We theoretically demonstrate that high-density three-dimensional (3-D) arrays of self-assembled Ge QDs, with a size of only some nanometers, in a Si matrix can also show an ultra-low thermal conductivity in the three spatial directions. This property can be considered to design new CMOS-compatible thermoelectric devices. To obtain a realistic and computationally-manageable model of these nanomaterials, we simulate their thermal behavior with atomic-scale 3-D phononic crystals. A phononic-crystal period (supercell) consists of diamond-like Si cells. At each supercell center, we substitute Si atoms by Ge atoms to form a box-like nanoparticle. Since this phononic crystal is periodic, we compute its phonon dispersion curves by classical lattice dynamics. Non-periodicities can be introduced with statistical distributions. From the flat dispersion curves, we obtain very small group velocities; this reduces the thermal conductivity in our phononic crystal compared to bulk Si. However, owing to the wave-particle duality at very small scales in quantum mechanics, another reduction arises from multiple scattering of the particle-like phonons in nanoparticle clusters. At room temperature, the thermal conductivity in an example phononic crystal can be reduced by a factor of at least 165 compared to bulk Si or below 0.95 W/mK. This value, which is lower than the classical Einstein limit of single crystalline Si, is an upper limit of the thermal conductivity since we use an incoherent-scattering approach for the nanoparticles. Because of its very low thermal conductivity, we hope to obtain a much larger ZT than unity in our atomic-scale 3-D phononic crystal. Indeed, this silicon-based nanomaterial is crystalline with a power factor that can be optimized by doping using CMOS-compatible processes. Future research on the phononic-crystal electrical conductivity has to be performed in order to compute the full ZT with a good accuracy.


2020 ◽  
Vol 8 (27) ◽  
pp. 13812-13819 ◽  
Author(s):  
Tribhuwan Pandey ◽  
Arun S. Nissimagoudar ◽  
Avanish Mishra ◽  
Abhishek K. Singh

We predict that mixed valent indium compounds exhibit a combination of high electrical conductivity, high thermopower, and low thermal conductivity, resulting in a large thermoelectric figure of merit.


2008 ◽  
Vol 8 (1) ◽  
pp. 452-456 ◽  
Author(s):  
Wenzhong Wang ◽  
Xiao Yan ◽  
Bed Poudel ◽  
Yi Ma ◽  
Qing Hao ◽  
...  

We describe a one-step, one-pot non-aqueous route for the synthesis of Sb2Te3 nanocrystals with hexagonal shape and highly anisotropic nanostructures. The as-prepared nanostructures were characterized by XRD, TEM and HRTEM. The effect of the stabilizers on the nanocrystal morphology has been discussed in detail. We have studied the thermal conductivity of the compacted bulk from the Sb2 Te3 nanostructures. The results indicated that a very low thermal conductivity of about 1 W/mK at 300 K, comparing to 4.7 W/mK of the polycrystalline bulk, was achieved. The results indicated that nanostructured Sb2 Te3 is potentially a good candidate for engineered nanocomposites that can lead to high thermoelectric figure-of-merit.


2015 ◽  
Vol 28 (1) ◽  
pp. 376-384 ◽  
Author(s):  
Rabih Al Rahal Al Orabi ◽  
Nicolas A. Mecholsky ◽  
Junphil Hwang ◽  
Woochul Kim ◽  
Jong-Soo Rhyee ◽  
...  

2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.


Sign in / Sign up

Export Citation Format

Share Document