Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics

2020 ◽  
Vol 124 (16) ◽  
pp. 8894-8904 ◽  
Author(s):  
Florian Meierhofer ◽  
Frank Dissinger ◽  
Florian Weigert ◽  
Jörgen Jungclaus ◽  
Knut Müller-Caspary ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31884-31888 ◽  
Author(s):  
Shaoqing Liu ◽  
Ruili Liu ◽  
Xia Xing ◽  
Chongqing Yang ◽  
Yi Xu ◽  
...  

A hydrothermal strategy towards nitrogen-rich carbon dots with a high quantum yield of ∼42% has been successfully developed by using melamine and citric acid as the precursors.


MRS Advances ◽  
2015 ◽  
Vol 1 (19) ◽  
pp. 1333-1338 ◽  
Author(s):  
Jilong Wang ◽  
Siheng Su ◽  
Jingjing Qiu

ABSTRACTIn this paper, hydrothermal method has been employed to synthesize oxygen-modified carbon dots (O-CDs) from citric acid and nitrogen and sulfur modified carbon dots (N,S-CDs) from citric acid and cysteine. Both as-prepared carbon dots achieve naked-eye observable blue-green luminescence. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) are used to exhibit the chemical composition of carbon dots. The structure and size of both carbon dots are similar via transmission electron microscopy (TEM) and dynamic light scattering (DLS), which indicates that the function of size effect can be neglected in this study. Fluorescence properties, UV-vis absorption and solubility are systemically studied to investigate the influence of surface modification. The N,S-CDs show high quantum yield and excitation independent photoluminescence, however, the O-CDs present low quantum yield and excitation dependent photoluminescence, and both carbon dots achieve strong photo-stability. The cytotoxicity of carbon dots is also performed on U87-MG brain tumor cells, which shows that both carbon dots process good biocompatibility and low toxicity in live cell. The bright cellular imaging photos indicate that both carbon dots have great potential to serve as high quality optical imaging probes.


RSC Advances ◽  
2019 ◽  
Vol 9 (15) ◽  
pp. 8290-8299 ◽  
Author(s):  
Dandan Xu ◽  
Fang Lei ◽  
Haohong Chen ◽  
Luqiao Yin ◽  
Ying Shi ◽  
...  

Blue CDs with a quantum yield of 30.21% were successfully synthesized by a simple one-pot hydrothermal treatment using citric acid (carbon source) and polyvinyl pyrrolidone (nitrogen source) as the raw materials towards fluorescent ink and as nanosensors for Fe3+ detection.


Author(s):  
Mai Xuan Dung ◽  
Mai Van Tuan ◽  
Pham Truong Long ◽  
Nguyen Thi Mai

Water-soluble, biocompatible, and highly luminescence carbon quantum dots (CQDs) have synthesized successfully from a citric acid (CA) and ethylenediamine (EDA) by using different approaches. Although the emission quantum yield of CQDs could be as high as 80% their emission spectrum is usually dominated by surface fluorophore groups and maximized at about 450 nm. Herein, we examined the effects of acid and amine precursors on the photoluminescence (PL) of resulting CQDs by systematic comparison the optical properties of CQDs obtained from CA, PA (phthalic acid) and EDA, ANL (aniline). UV-vis and PL spectroscopic studies revealed that the absorption onset varied from 325 nm to 400 nm while PL maximum changed from 390 nm to 450 nm by engineering acid and amine precursors. The emission quantum yield was also changed from 9 to 70%, depending on the used acid-amine precursors.  Keywords Carbon quantum dots, hydrothermal synthesis, color tuning, photoluminescence, acid, amine References K. Wang, Z. Gao, G. Gao, Y. Wo, Y. Wang, G. Shen, D. Cui, Systematic safety evaluation on photoluminescent carbon dots, Nanoscale Res. Lett. 8 (2013) 1–9. doi:10.1186/1556-276X-8-122.[2] K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging, Angew. Chemie Int. Ed. 54 (2015) 5360–5363. doi:10.1002/anie.201501193.[3] M.X. Dung, P. Mohapatra, J.K. Choi, J.H. Kim, S. Jeong, H.D. Jeong, InP quantum dot-organosilicon nanocomposites, Bull. Korean Chem. Soc. 33 (2012) 1491–1504. doi:10.5012/bkcs.2012.33.5.1491.[4] X. Mai, Q. Hoang, The Large-Scale Synthesis of Vinyl-Functionalized Silicon Quantum Dot and Its Application in Miniemulsion Polymerization, J. Nanomater. 2016 (2016).[5] M.X. Dung, D.D. Tung, S. Jeong, H.D. Jeong, Tuning optical properties of Si quantum dots by ??-conjugated capping molecules, Chem. - An Asian J. 8 (2013) 653–664. doi:10.1002/asia.201201099.[6] M.X. Dung, H.D. Jeong, Synthesis of styryl-terminated silicon quantum dots: Reconsidering the use of methanol, Bull. Korean Chem. Soc. 33 (2012) 4185–4187.doi:10.5012/bkcs.2012.33.12.4185.[7] V.-T. Mai, N.H. Duong, X.-D. Mai, Surface Polarity Controls the Optical Properties of One-Pot Synthesized Silicon Quantum Dots, Chem. Phys. (2018).doi:10.1016/j.chemphys.2018.11.012.[8] V.-T. Mai, Q. Hoang, X. Mai, Enhanced Red Emission in Ultrasound-Assisted Sol-Gel Derived ZnO/PMMA Nanocomposite, Adv. Mater. Sci. Eng. 2018 (2018) 1–8. doi:10.1155/2018/7252809.[9] J. Schneider, C.J. Reckmeier, Y. Xiong, M. Von Seckendorff, A.S. Susha, P. Kasak, A.L. Rogach, Molecular fluorescence in citric acid-based carbon dots, J. Phys. Chem. C. 121 (2017) 2014–2022. doi:10.1021/acs.jpcc.6b12519.[10] F. Ehrat, S. Bhattacharyya, J. Schneider, A. Löf, R. Wyrwich, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores, Nano Lett. 17 (2017) 7710–7716. doi:10.1021/acs.nanolett.7b03863.[11] M. Shamsipur, A. Barati, A.A. Taherpour, M. Jamshidi, Resolving the Multiple Emission Centers in Carbon Dots: From Fluorophore Molecular States to Aromatic Domain States and Carbon-Core States, J. Phys. Chem. Lett. 9 (2018) 4189–4198. doi:10.1021/acs.jpclett.8b02043.[12] T.H.T. Xuan-Dung Mai, Quang-Bac Hoang, Hong Quan To, Phuong Le Thi, The synthesis of highly luminescent carbon quantum dots, (2017) (47)20-26.[13] M.X.D. Lê Thị Phượng, Lê Quang Trung, Đỗ Thị Thu Hòa, Doãn Diệu Thúy, Ảnh hưởng của tỷ lệ Acid/Amine đến cấu trúc bề mặt và hiệu suất phát xạ của chấm lượng tử carbon, (2018) (55) 67-74.[14] M.V.T. Hoàng Quang Bắc, Trần Thu Hương, Đinh Thị Châm, Nguyễn Thị Loan, Nguyễn Thị Quỳnh, Bùi Thị Huệ, Lê Thị Thùy Hương, Mai Xuân Dũng, Nghiên cứu tổng hợp hạt nano huỳnh quang từ một số rau củ quả, (2017) 4(40), 70-73.[15] Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao, B. Yang, Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine, J. Mater. Chem. C. 3 (2015) 5976–5984. doi:10.1039/C5TC00813A.[16] T.H. Ngà, B.T. Hạnh, M.X. Dũng, Tính toán lượng tử làm rõ tính chất quang học của chấm lượng tử carbon, Tạp Chí KHoa Học - Đại Học Sư Phạm Hà Nội 2. 56 (2018).[17] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging, Angew. Chemie - Int. Ed. 52 (2013) 3953–3957. doi:10.1002/anie.201300519.[18] Q.-B. Hoang, V.-T. Mai, D.-K. Nguyen, D.Q. Truong, X.-D. Mai, Crosslinking induced photoluminescence quenching in polyvinyl alcohol-carbon quantum dot composite, Mater. Today Chem. 12 (2019) 166–172. doi:10.1016/j.mtchem.2019.01.003.


RSC Advances ◽  
2017 ◽  
Vol 7 (33) ◽  
pp. 20345-20353 ◽  
Author(s):  
Wenkai Zhang ◽  
Lijuan Shi ◽  
Yingqiu Liu ◽  
Xianrui Meng ◽  
Hao Xu ◽  
...  

Fluorophores coupled with supramolecules lead to “dot” topologies in citric-acid derived carbon dots under the effect of hydrogen bonding.


2019 ◽  
Vol 19 (7) ◽  
pp. 4058-4063 ◽  
Author(s):  
Yu-Juan Chen ◽  
Zhao-En Liu ◽  
Qian Yang ◽  
Chun-Feng Wang ◽  
Ke-Lei Zhuo

2016 ◽  
Vol 237 ◽  
pp. 408-415 ◽  
Author(s):  
Anam Iqbal ◽  
Yuejun Tian ◽  
Xudong Wang ◽  
Deyan Gong ◽  
Yali Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document