Room-Temperature Dinitrogen and Carbon Dioxide Activation to Form Nitrogen–Carbon Bonds by Quaternary Cluster Anions: Gold-Assisted Enhancement of Reactivity

Author(s):  
Yong-Qi Ding ◽  
Ying Li ◽  
Fei Ying ◽  
Ming Wang ◽  
Jia-Bi Ma
2015 ◽  
Vol 44 (14) ◽  
pp. 6560-6570 ◽  
Author(s):  
Subrata Chakraborty ◽  
Olivier Blacque ◽  
Heinz Berke

Molybdenum and tungsten amides M(NO)(CO)(PNP) {M = Mo, 3a; W, 3b; PNP = (iPr2PCH2CH2)2N} can activate CO2 at room temperature forming carbamate species M(NO)(CO)(PNP)(OCO) (M = Mo, 4a(trans); W = 4b(trans). Employing 3a,b stoichiometric hydrogenation of carbon dioxide could be demonstrated.


2013 ◽  
Vol 395-396 ◽  
pp. 637-640
Author(s):  
Yi Yang ◽  
Zheng Ping Wang ◽  
Ling Meng ◽  
Lian Jun Wang

MIL-101, a metal-organic framework material, was synthesized by the high-temperature hydrothermal method. Triethylenetetramine (TETA) modification enabled the effective grafting of an amino group onto the surface of the materials and their pore structure. The crystal structure, micromorphology, specific surface area, and pore structure of the samples before and after modification were analyzed with an X-ray diffractometer, scanning electron microscope, specific surface and aperture tester, and infrared spectrometer. The carbon dioxide adsorption properties of the samples were determined by a thermal analyzer before and after TETA modification. Results show that moderate amino modification can effectively improve the microporous structure of MIL-101 and its carbon dioxide adsorption properties. After modification, the capacity of MIL-101 to adsorb carbon dioxide decreased only by 0.61 wt%, and a high adsorption capacity of 9.45 wt% was maintained after six cycles of adsorption testing at room temperature and ambient pressure.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 522
Author(s):  
Zhi Yan Lee ◽  
Huzein Fahmi bin Hawari ◽  
Gunawan Witjaksono bin Djaswadi ◽  
Kamarulzaman Kamarudin

A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor’s prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.


2006 ◽  
Vol 23 (6) ◽  
pp. 1046-1054 ◽  
Author(s):  
Yuvarat Ngernyen ◽  
Chaiyot Tangsathitkulchai ◽  
Malee Tangsathitkulchai

2005 ◽  
Vol 480-481 ◽  
pp. 117-122 ◽  
Author(s):  
Ayumu Tateoka ◽  
Yoshika Sekine ◽  
Takamasa Tsuda ◽  
Takanobu Ohashi

Authors have successfully synthesized a new environmental catalysis which reacted with harmful formaldehyde in air at room temperature. Although manganese oxide is practically used for a major ingredient of formaldehyde removing materials, intermediates such as formate formed on the surface reduced the removal efficiency. Then, manganese oxide was photodeposited onto the surface of titanium dioxide particles which could decompose certain organic compounds with UV irradiation. It was confirmed that the complex oxide decomposed formaldehyde into carbon dioxide at room temperature. Moreover, UV irradiation enhanced the production of the carbon dioxide.


2005 ◽  
Vol 44 (36) ◽  
pp. 5828-5830 ◽  
Author(s):  
David Santamaría ◽  
Jesús Cano ◽  
Pascual Royo ◽  
Marta E. G. Mosquera ◽  
Tomás Cuenca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document