scholarly journals Large-Composition-Range Pure-Phase Homogeneous InAs1–xSbx Nanowires

Author(s):  
Lianjun Wen ◽  
Dong Pan ◽  
Lei Liu ◽  
Shucheng Tong ◽  
Ran Zhuo ◽  
...  
Keyword(s):  
Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


1985 ◽  
Vol 55 ◽  
Author(s):  
J-P. Hirvonen ◽  
M. Nastasi ◽  
J. R. Phillips ◽  
J. W. Mayer

ABSTRACTMultilayered samples of Ti-Pd with linearly varying compositions were irradiated by Xe ions at 600 keV. The induced microstructures were studied by using transmission electron microscopy and Rutherford backscattering. Mixing was found to be complete over the entire composition range, resulting in amorphous or amorphous plus crystalline structures except at the palladium-rich end, where a crystalline Pd-Ti solid solution was obtained. This is consistent with the high equilibrium solubility of Ti in Pd. In addition, significant coarsening of the microstructure caused by irradiation was found in this solid solution region.Friction measurements were carried out in air and water by using a polytetrafluoroethylene pin as a counterpart. In air the friction coefficient was independent of composition and microstructure after about 2000 passes. In water, however, after 600 passes the friction coefficient reached a steady-state value with a pronounced minimum over the amorphous region. This property was unchanged throughout the remaining 10000 passes.


2015 ◽  
Vol 7 (2) ◽  
pp. 1393-1403
Author(s):  
Dr R.P VIJAYALAKSHMI ◽  
N. Manjula ◽  
S. Ramu ◽  
Amaranatha Reddy

Single crystalline nano-sized multiferroic BiFeO3 (BFO) powders were synthesized through simple chemical co-precipitation method using polyethylene glycol (PEG) as capping agent. We obtained pure phase BiFeO3 powder by controlling pHand calcination temperature. From X-ray diffraction studies the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure belonging to the space group of R3c. No secondary phases were detected. It indicates single phase structure. EDX spectra indicated the appearance of three elements Bi, Fe, O in 1:1:3. From the UV-Vis diffuse reflectance spectrum, the absorption cut-off wavelength of the BFO sample is around 558nm corresponding to the energy band gap of 2.2 eV. The size (60-70 nm) and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM).   Linear M−H behaviour and slight hysteresis at lower magnetic field is observed for BiFeO3 nanoparticles from Vibrating sample magnetometer studies. It indicates weak ferromagnetic behaviour at room temperature. From dielectric studies, the conductivity value is calculated from the relation s = L/RbA Sm-1 and it is around 7.2 x 10-9 S/m.


2021 ◽  
Vol 10 (2) ◽  
pp. 355-367
Author(s):  
Weiyi Yang ◽  
Yan Chen ◽  
Shuang Gao ◽  
Licheng Sang ◽  
Ruoge Tao ◽  
...  

AbstractPhotocatalysts with the photocatalytic “memory” effect could resolve the intrinsic activity loss of traditional photocatalysts when the light illumination is turned off. Due to the dual requirements of light absorption and energy storage/release functions, most previously reported photocatalysts with the photocatalytic “memory” effect were composite photocatalysts of two phase components, which may lose their performance due to gradually deteriorated interface conditions during their applications. In this work, a simple solvothermal process was developed to synthesize Bi2WO6 microspheres constructed by aggregated nanoflakes. The pure phase Bi2WO6 was found to possess the photocatalytic “memory” effect through the trapping and release of photogenerated electrons by the reversible chemical state change of W component in the (WO4)2− layers. When the illumination was switched off, Bi2WO6 microspheres continuously produced H2O2 in the dark as those trapped photogenerated electrons were gradually released to react with O2 through the two-electron O2 reduction process, resulting in the continuous disinfection of Escherichia coli bacteria in the dark through the photocatalytic “memory” effect. No deterioration of their cycling H2O2 production performance in the dark was observed, which verified their stable photocatalytic “memory” effect.


2021 ◽  
Vol 299 ◽  
pp. 122136
Author(s):  
Huibin Ding ◽  
Zihan Song ◽  
Kai Feng ◽  
Hongzhang Zhang ◽  
Huamin Zhang ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 899
Author(s):  
Murendeni P. Ravele ◽  
Opeyemi A. Oyewo ◽  
Damian C. Onwudiwe

Pure-phase Cu2−xS (x = 1, 0.2) nanoparticles have been synthesized by the thermal decomposition of copper(II) dithiocarbamate as a single-source precursor in oleylamine as a capping agent. The compositions of the Cu2−xS nanocrystals varied from CuS (covellite) through the mixture of phases (CuS and Cu7.2S4) to Cu9S5 (digenite) by simply varying the temperature of synthesis. The crystallinity and morphology of the copper sulfides were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed pure phases at low (120 °C) and high (220 °C) temperatures and a mixture of phases at intermediate temperatures (150 and 180 °C). Covellite was of a spherical morphology, while digenite was rod shaped. The optical properties of these nanocrystals were characterized by UV−vis–NIR and photoluminescence spectroscopies. Both samples had very similar absorption spectra but distinguishable fluorescence properties and exhibited a blue shift in their band gap energies compared to bulk Cu2−xS. The pure phases were used as catalysts for the photocatalytic degradation of tetracycline (TC) under visible-light irradiation. The results demonstrated that the photocatalytic activity of the digenite phase exhibited higher catalytic degradation of 98.5% compared to the covellite phase, which showed 88% degradation within the 120 min reaction time using 80 mg of the catalysts. The higher degradation efficiency achieved with the digenite phase was attributed to its higher absorption of the visible light compared to covellite.


Author(s):  
Christos P.E. Varsamis ◽  
Nikos Makris ◽  
Christina Valvi ◽  
E. I. Kamitsos

Bismuth-containing borate glasses, xBi2O3-(1-x)B2O3, were synthesized in the broad composition range 0.20≤x≤0.80 by melting in Pt crucibles and splat-quenching between two metal blocks. Infrared reflectance spectra, measured in the range...


Sign in / Sign up

Export Citation Format

Share Document